Measurement of proton beam polarization in RHIC using *pC* elastic scattering

Osamu Jinnouchi (RBRC) On behalf of CNI Group (Polarimeter + Jet)

I.G.Alekseev^A A.Bravar^B G.Bunce^B S.Dhawan^D R.Gill^B H.Huang^B W.Haeberli^E G.Igo^F V.P.Kanavets^A K.Kurita^H A.Khodinov^J Z.Li^B Y.Makdisi^B A.Nass^B W.Lozowski^I W.W.MacKay^B H.Okada^G S.Rescia^B T.Roser^B N. Saito^G H.Spinka^L D.N.Svirida^A D.Underwood^L C.Witten^F T.Wise^I J.Wood^F A.Zelenski^B RBRC ITEP^A BNL^B ANL^C Yale U^D Wisconsin U^E UCLA^F Kyoto U^G Rikkyo U^H Indiana U^I StonyBrook U^J IUCF^K Argonne U^L

Elastic $pC \rightarrow pC$ scattering at very low -t range

- Elastic scattering of hadron-Nucleus at RHIC has an important physics information on spin-dependent hadronic amplitude in high energy
- Elastic scattering process is identified by detecting recoil Carbon (inelastic fraction~10⁻²)
- Use single transverse spin asymmetry A_N of *pC* for polarimetry at RHIC

An arises mainly from interference between *EM spin-flip amplitude* and *hadronic non spin-flip amplitude* (CNI = Coulomb – Nuclear Interference)

$$A_{N} = C_{1}\phi_{em}^{flip}Im\phi_{had}^{nonflip} + C_{2}\phi_{em}^{nonflip}\phi_{had}^{flip}$$

$$\propto (\mu - 1)_{p} \text{ Pure CNI} \propto \sqrt{\sigma_{had}^{pp}} \text{ Regge poles /Pomeron exchange}$$
An is also sensitive probe to hadronic spin flip amplitude
$$y_{28/2004}$$

$$y_{28/2004}$$

$$y_{28/2004}$$

Helicity amplitude formalism and r5 physics

Analogy to *pp* helicity amplitude formalism *pC* process being described by two amplitudes

Non-flip $F_{+0}(s,t) = <+0|M|+0>$ **Spin flip** $F_{-0}(s,t) = <+0|M|-0>$

$$F_{i} = F_{i}^{em} + e^{i\delta}F_{i}^{h} \quad (i = +0, -0)$$
$$r_{5}^{pC}(t) = \frac{mF_{-0}^{h}}{\sqrt{-t} \operatorname{Im}F_{+0}^{h}}$$

spin flip amplitude ratio, $r_5^{pC}(t)$ for pC is translated into parameter r_5 for pp

AN is described with two parameters $\operatorname{Re} r_5$, $\operatorname{Im} r_5$

s-dependence (E_B=24GeV, 100GeV)? phase?

RHIC Proton Polarization measurements

RHIC pC CNI Polarimeters :

- quick polarimeters used since Run-02
- determine relative P
- need A_N calibration

H jet pp polarimeter : (\rightarrow next speaker)

- commissioned at Run-04
- absolute polarization measurement
- calibrate pC CNI polarimeters
- Final goal is to achieve dP/P < 5%</p>

Detector setup + DAQ

9/28/2004

JPS Fall -- Kochi

Recoil carbon PID \rightarrow Asymmetry calculation

Particle ID (banana cut)

 Clear separation from backgrounds using TOF measurement

non-relativistic kinematics

$$tof = \sqrt{rac{M_C}{2T_{kin}}}L$$

Asymmetry calculation

$$egin{aligned} &arepsilon_N^{\uparrow} = -rac{N_L^{\uparrow} - N_R^{\uparrow}}{N_L^{\uparrow} + N_R^{\uparrow}} & \mathrm{ff} \ &arepsilon_N^{\downarrow} = -rac{N_R^{\downarrow} - N_L^{\downarrow}}{N_R^{\downarrow} + N_L^{\downarrow}} & \mathrm{ff} \end{aligned}$$

for up spin

for down spin

With alternating spin pattern (+,-,+,-) square-root formula

$$arepsilon_N = -rac{\sqrt{N_L^{\uparrow}N_R^{\downarrow}} - \sqrt{N_R^{\uparrow}N_L^{\downarrow}}}{\sqrt{N_L^{\uparrow}N_R^{\downarrow}} + \sqrt{N_R^{\uparrow}N_L^{\downarrow}}}$$

 $A_N = \varepsilon_N / P_{beam}$

 $\langle AN \rangle$ is known to $\pm 30\%$ (E950 data at 22GeV)

H-jet target commissioning at 2004, the aim is to obtain $\pm 10\%$ calibration at 100GeV

Offline analysis with event by event data

Energy calibration

- Tracking calibration constant with ²⁴¹Am (5.486MeV)
- Stable within ± 2% through run period
- Correction for energy loss in silicon non-active layer on surface
 - Estimated from deformation of carbon kinetic curve (tof vs. energy)
 - \rightarrow 57 µg/cm² in average (± 12 µg/cm²)
 - o 6 detectors from same wafer
 - Small variation from strip to strip

Event selection on invariant mass

- o Better S/N than timing cut
- Mass resolution evolves during fills
- \circ 3 σ cut applied

Raw asymmetry (t) in wide range

- running Jet-target in parallel
- o very clean asymmetry values

- \circ Signal attenuation (x1/2) to reach higher -t
- Normalized at overlap region to regular runs
- Zero crossing measured with large significance

$A_N(t)$ at 100GeV and fit result with theoretical function

Only BLUE ring has Jet-Target for Run-04 Hadron spin-flip term is still significant at 100GeV

$$A_N(t) = \frac{\varepsilon_N(t)}{P_{beam}}$$

 1.2 x 10⁹ events are collected with P_B known from jet-target

 $P_{B} = 0.386 \pm 0.030$

- Fit with CNI theory function (hep-ph/0305085)
- Major sources for sys errors

•Si dead layer on $-t (\pm 12\mu g/cm^2)$ •Propagation from error on P_B •The effects are scaling or shifting

A_N(t) comparison between 24GeV vs. 100GeV

Raw asymmetry for 24GeV data is available (Not calibrated yet)
 Raw asymmetries at 24GeV are normalized by A_N(t) theory fit

function to E950

Discussion & Summary

- *pC* polarimeters used to measure beam polarizations in RHIC
- AN measurement of pC elastic scattering was carried out at E_B=100GeV with Jet-Target for P_B
- In high -*t* range at 100GeV, zero crossing of A_N is observed
- The shapes of A_N(t) are different btw 24GeV and 100GeV
- Is parameter was measured at EB=100GeV

AN Calibration at EB=24GeV is in progress