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Search for Hidden Chambers
in the Pyramids

The structure of the Second Pyramid of Giza
is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedweli,

James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid,
Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy,
Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino

The three pyramids of Giza are situ-
ated a few miles southwest of Cairo,
Egypt. The two largest pyramids stand
within a few hundred meters of each
other. They were originally of almost
exactly the same height (145 meters),
but the Great Pyramid of Cheops has
a slightly larger square base (230 meters
on a side) than the Second Pyramid of
Chephren (215.5 meters on a side). A
photograph of the pyramids at Giza
is shown as Fig. 1. Figure 2 shows the
elevation cross sections of the two
pyramids and indicates the contrast in
architectural design. The simplicity of
Chephren’s pyramid, compared with
the elaborate structure of his father’s
Great Pyramid, is explained by arche-
ologists in terms of a “period of ex-
perimentation,” ending with the con-
struction of Cheops’s. pyramid (I). (The
complexity of the internal architecture
of the pyramids increased during the
Fourth Dynasty until the time of
Cheops and then gave way to quite
simple designs after his time.)

An alternative explanation for the
sudden decrease in internal complexity
from the Great Pyramid to the Second
Pyramid suggested itself to us: perhaps
Chephren’s architects had been more
successful in hiding their upper cham-
bers than were Cheops’s. The interior
of the Great Pyramid was reached by
the tunneling laborers of Caliph Ma-

The authors are affiliated with the Joint Pyra-
mid Project of the United Arab Republic and the
United States of America. They reside either in
Cairo, United Arab Republic, or in Berkeley,
California. The article is adapted from an ad-
dress presented by Luis W. Alvarez at the
Washington Meeting: of the American Physical
Society, 30 April 1969.
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mun in the 9th century A.D., almost -

3400 years after its construction. Of
our group only Ahmed Fakhry (author
of The Pyramids, professor emeritus of
archeology, University of Cairo, and

- member of the Supreme Council of

Archeology, Cairo) was trained in ar-
cheology. As laymen, we thought it not
unlikely that unknown chambers might
still be present in the limestone above
the “Belzoni Chamber,” which is near
the center of the base of Chephren’s
Second Pyramid, and that these cham-
bers had survived undetected for 4500
years. {We learned later that such ideas
had occurred to early 19th-century in-
vestigators (2), who blasted holes in the
pyramids with gunpowder in attempts
to locate new chambers.]

In 1965 a proposal to probe the
Second Pyramid with cosmic rays (3)
was sent to a representative group of
cosmic-ray physicists and archeologists
with a request for comments concern-
ing its technical feasibility and archeo-
logical interest. The principal novelty
of the proposed cosmic-ray detectors
involved their ability to measure the
angles of arrival of penetrating cosmic-
ray muons with great precision, over a
large sensitive area. The properties of
the penetrating cosmic rays have been
sufficiently well known for 30 years to
suggest their use in a pyramid-probing
experiment, but it was not until the
invention of spark chambers with digi-
tal read-out features (4) that such a

~use could be considered as a real pos-

sibility. [Cosmic-ray detectors with low
angular resolution had been used in
1955 to give an independent measure

of the thickness of rock overlying an
underground powerhouse in Australia’s
Snowy Mountains Scheme (5)].

The favorable response to the pro-
posal led to the establishment by the
United Arab Republic and the United
States of America of the Joint U.A.R.—
U.S.A. Pyramid Project on 14 June
1966. Cosmic-ray detectors were in-
stalled in the Belzoni Chamber of the
Second Pyramid at Giza in the spring
of 1967 by physicists from the Ein
Shams University and the University
of California, in cooperation with ar-
cheologists from the U.A.R. Depart-
ment of Antiquities. Initial operation
had been scheduled for the middle of
June 1967, but for reasons beyond our
control the schedule was delayed for
several months. In early 1968 cosmic-
ray data began to be recorded on mag-
netic tape in our laboratory building,
a few hundred meters from the two
largest pyramids. Since that time we
have accumulated accurate angular
measurements on more than a million
cosmic-ray muons that have penetrated
an average of about 100 meters of
limestone on their way to the detectors
in the Belzoni Chamber.

Proof of the Method

Before any new technique is used
in an exploratory mode, it is essential
that the capabilities of the technique
be demonstrated on a known system.
We gave serious consideration to a
proposal that the cosmic-ray detectors
be tested first in the Queen’s Chamber
of the Great Pyramid, to demonstrate
that the King’s Chamber and the Grand
Gallery could be detected. But this
suggestion was abandoned because the
King’s Chamber is so close to the
Queen’s Chamber and because it sub-
tends such a large solid angle that ear-
lier (low resolution) cosmic-ray experi-
ments ‘had already shown that the
upper chamber would give a large
signal. It was apparent that the only
untested feature of the new technique
involved the magnitude of the scatter-
ing of high energy muons in solid mat-
ter. (An anomalously large scattering
would nullify the high angular resolu-
tion that had been built into the de-
tectors, in the same way that frosted
glass destroys our ability to see distant
objects.) We had no reason to doubt
the calculated scattering, but we were
anxious to be able to demonstrate to
our colleagues in the U.A.R. Depart-
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Fig. 1 (top right). The pyramids at Giza.
From left to right, the Third Pyramid of
Mycerinus, the Second Pyramid of Che-
phren, the Great Pyramid of Cheops.
[© National Geographic Society]

ment of Antiquities in a convincing
manner that the technique really worked
as we had calculated. For this purpose
we required as our test objects not
large features that were nearby but,
instead, small features separated from
the detectors by the greatest possible
thickness of limestone. Fortunately,
such features are available in the Sec-
ond Pyramid; the four diagonal ridges
that mark the intersections of neighbor-
ing plane faces were farther from the
detectors than any other points on the
individual faces. (From now on, we
will refer to these ridges as the “cor-
ners.”) »

From the known geometry of the
Second Pyramid, the trajectories of
cosmic-ray muons that pass through a
point on a face 10 meters from a corner
and then down to the detectors can be
shown to traverse 2.3 fewer meters
of limestone than do muons that strike
the corner. They should therefore ar-
rive’ with 5 percent greater intensity
than the muons from the corner. Such
an increase in intensity, corresponding
to such a decrease in path through the
limestone, is about half of what would
be expected to result from the presence
of a chamber of “typical size” (5 me-
ters high) in the pyramid. Since such a
chamber would necessarily be closer to
the detectors, it would for these two
reasons be a much ‘easier object to
see” than the corner.

The detection equipment was there-
fore installed in the southeast corner
of the Belzoni Chamber, with the ex-
pectation that it would first show the
corners in a convincing manner, so that
the presence or absence of unknown
chambers could later be demonstrated
to the satisfaction of all concerned. In
September 1968 the IBM-1130 com-
puter at the Ein Shams University
Computing Center produced the data

Fig. 2 (bottom right). Cross sections of (a)
the Great Pyramid of Cheops and (b) the
Pyramid of Chephren, showing the known
chambers: (4) Smooth limestone cap, (B)
the Belzoni Chamber, (C) Belzoni’s en-
trance, (D) Howard-Vyse’s entrance, (E)
descending passageway, (F) ascending
passageway, (G) underground chamber,
(H) Grand Gallery, (I) King’s Chamber,
(J) Queen’s Chamber, (K) center line of
the pyramid.
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Fig. 3 (left). The initial measurement (with zenith angle of counts from 20 to 40 degrees) of the variation of cosmic-ray intensity

with azimuthal angle, as observed from the Belzoni Chamber underneath the Second Pyramid of Chephren.

Fig. 4 (right).

Detection of .the northeast and southwest corners of the pyramid obtained by plotting the second differences of the counting

rate on the planes tangent to the corners as a function of distance from the corners.

a

for Fig. 3, which shows the variation
of cosmic-ray intensity with azimuthal
angle (compass direction). The expected
rapid changes in cosmic-ray intensity
in the vicinity of the corners were
clearly shown, and the capability of the
method could no longer be doubted.
An analysis of more data was later
made on the Lawrence Radiation Labo-
ratory’s CDC-6600 computer and is
shown in Fig. 4. Here the “second dif-
ferences” of the counting rate with
distance from each corner are plotted
on planes that are located symmetrical-
ly with respect to adjacent faces and
that are tangent to the corner. Mathe-
matically, we would expect to see a
sharp spike at the corner of a sharply
defined pyramid in the plot of the
second derivative of counting rate with
respect to distance. The second deriva-
tive becomes a second difference curve
when we use bins of a finite size. The
sharpness of the peaks in the second
difference curves shows that the effect
of the scattering of muons in limestone
is somewhat smaller than the conserva-
tive estimate made in the original pro-
posal.

We were at first surprised by the
large variations in maximum counting
rate through the four faces of the
pyramid. We knew that the Belzoni
Chamber was not at the exact center of
the base of the pyramid, but we had
not appreciated what large changes in
counting rate would be occasioned by
the actual displacement of the detector
from the center of the base; the equip-
ment is 15.5 meters east and 4 meters
north of the center. There are two in-
dependent ways to use cosmic-ray data

834

to determine the location of the detec-
tor with respect to the exterior features
of the pyramid.

1) The difference in the maximum
counting rate through the east and west
faces gives the displacement of the
detector toward the east, and similar
measurements in the north-south di-
rections give the displacement to the
north.

2) The azimuthal angles of the dips
corresponding to the corners give a
second, quite independent, and more

. sensitive measure of the displacements.

We can report that from cosmic-ray
observations alone, “looking through”
100 meters of limestone, we can locate
the position of our detectors to within
1 meter. To the best of our knowledge,
no such measurement has ever been
made before. Our cosmic-ray-derived
position agrees to within less than 1
meter in the north-south direction with
a recently surveyed position obtained
by the U.A.R. Surveying Department,
but it differs by 2 meters (that is, it
indicates 13.5 rather than 15.6 meters)
in the east-west direction.

Simulated X-ray Photographs

We have presented the cosmic-ray
data in two different ways, one photo-
graphic and the other numerical. Both
these methods involve the projection
of each recorded muon back along its
trajectory to its intersection with either
a horizontal plane or a sphere that
touches the peak of the pyramid. Figure
5a is a diagram representing the Sec-
ond Pyramid with the horizontal “film

plane” touching the peak of the pyra-
mid and with a dashed line (represent-
ing the path of a cosmic ray) passing
from the detector through a hypotheti-
cal chamber to the image of the cham-
ber on the “film plane.” (The mapping
of the pyramid structure by this tech-
nique is identical to what we would
obtain by x-raying a small model of
the pyramid, with an x-ray source in
the Belzoni Chamber and with an x-ray
film touching the peak of the model
pyramid.) Figure 5b represents the
spherical shell onto which cosmic rays
were projected for numerical analysis.

Figure 6 is a view of all the equip-
ment, which occupied most of the
southeastern part of the Belzoni Cham-
ber. Figure 7 is a closer view of the
detector. The two spark chambers,
each 6 feet (1.8 meters) square, are
separated vertically by a distance of
| foot (0.3 meter). Above and below
the spark chambers and just above the
floor level were scintillation counters,
which triggered the spark chambers
when all three counters signaled the
passage of a penetrating muon. The
4 feet (1.2 meters) of iron between
the bottom two scintillators was in-
stalled to minimize the effects of muon-
scattering in the limestone.

The simulated x-ray photograph of
the pyramid shown in Fig. 13a is an
uncorrected (raw data) scatter plot of
700,000 recorded cosmic-ray muons as
they passed through the “film plane.”
The four corners of the pyramid are
very clearly indicated. If a Grand Gal-
lery and a King’s Chamber were located
in the Second Pyramid as they are in
the Great Pyramid, the Grand Gallery

SCIENCE, VOL. 167



Fig. 5. (a) Geometry of the
Second Pyramid, showing the
projection technique used to .
produce a simulated x-ray photograph. The plane on the top of the pyramid can be
thought of as the “film plane.” (b) The spherical surface on which the events were
projected for the numerical analysis of the data.

b

would have shown up clearly but the
King’s Chamber would probably have
required some computer assistance to
be made visible. There is one unex-
pected feature in Fig. 13a: on the north
face, there appears to be a narrow
north-south-oriented region that has
a lower cosmic-ray intensity than is
found in surrounding areas. We were
at first hopeful that the north-south
streak indicated the presence of a
Grand Gallery above and north of the
Belzoni Chamber, just as the Grand
Gallery is above and north of the
Queen’s Chamber in the Great Pyra-
mid. But we later found a satisfactory
explanation of this feature in the pic-
ture that did not involve any interior
structure in the pyramid. The region of
lower cosmic-ray intensity resulted
from the construction of the spark
chambers. Since we could not transport
square chambers 6 feet (1.8 meters)
on a side through the small passage-

ways of the pyramid, each square
chamber comprised two chambers 3
by 6 feet. (0.9 by 1.8 meters) in area.
Also, each of the large scintillation
counters was divided into sections. The
inactive areas between the two pairs of
spark chambers and between the sec-
tions of the counters led in a predict-
able way to the unexpected signal
shown in Fig. 13a.

Numerical Analysis

We concluded from our study of the
simulated x-ray picture that no unex-
pected features were discernible. But
since we had been looking for an in-
crease in intensity of approximately 10
percent over a region larger than that
to which the eye responds easily, we
then turned to a more detailed numeri-
cal analysis of the data. (The reason for
expecting a 10 percent increase in in-

Fig. 6 (left). The equipment in place in the Belzoni Chamber under the pyramid.
Fig. 7 (right). The detection apparatus containing the spark chambers.
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tensity in the direction of a new cham-
ber is simply that the integral range
spectrum of the muons is represented
by a power law with an exponent equal
to —2. Therefore, if the rock thickness
is changed by an amount AX, out of
an original thickness X, the relative
change in intensity is AlI/l = —2AX/X.
The four known chambers in the two
large pyramids have an average height
of about 5 meters. Therefore AX/X
should be —5 percent, and the corre-
sponding value of AI/I should be +10
percent.) :

Since the counting equipment was
sensitive out to approximately =45 de-
grees from the vertical, our data were
plotted in a matrix with 900 entries,
30 X 30 bins, each 3 by 3 degrees.
Figure 5b illustrates this system of
binning on a sphere that encircles
the pyramid. We wrote a computer
program to simulate the counting rate
expected in each of these bins. As the
simulation program became more so-
phisticated with time, it took into ac-
count the most detailed features of the
measured exterior surface of the pyra-
mid, including the “cap” of original
limestone casing blocks near the top,
the surveyed position of the detectors
in the Belzoni Chamber, the positions
of the walls and ceiling of the Belzoni
Chamber, and the sizes and positions
of each of the four spark chambers
and the fourteen scintillation counters.

An important control on the quality
of the experimental data being com-
pared with the simulated data came
from scatter plots showing the exact
x and y coordinates of each recorded




muon as it passed through each of the
five planes containing scintillators or
spark chambers. Unsatisfactory opera-
tion of the spark chambers showed up
as small blank areas in the scatter plots
of muons passing through the cham-
bers. Such unsatisfactory operation was

N
4

found to be correlated with contami-
nated neon in the spark chambers; the
log books show that whenever the
chambers were flushed with fresh neon
they recovered their substantially uni-
form sensitivity. By examining the scat-
ter plots on a day-by-day basis, we
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eliminated from the data base about
one-third of the measured muons.

The scatter plots also served as a
check on the resolution and accuracy
of the angle measurements. The edges .
of the counters showed up on these
plots as sharp lines at positions that
agreed well with the direct measure-
ments of the counter locations. Neither
the direct measurements of the counter
positions nor the inferred positions of
these counters as obtained from the
data themselves were good enough to
permit the program to make sufficiently
accurate calculations. In a typical . 3-
by 3-degree bin there are 1600 events.
The statistical uncertainty in this num-
ber of events is 2.5 percent. It was
necessary to make calculations to at
least such an accuracy to make full
use of the data. We first varied the as-
sumed positions of the scintillators by
small amounts in an effort to fit the
expected counts to the measured counts.
This approach was unsatisfactory. Cal-
culations of the desired accuracy were
obtained only after we eliminated the
events that passed near the edge of at
least one of the counters. In effect, each
counter was defined to be slightly small-
er than it actually was, and only th=
recorded muons that passed through
these defined counter positions were
accepted. This method eliminated the
problems associated with small displace-
ments of the counters during the ex-
periment, with small-angle scattering of
muons in the iron, and with decreased
sensitivity of the counters near their
edges. About 15 percent of the events
were eliminated in this way. We believe
that the 650,000 muons in the final
selected sample are free of important
biases resulting from improper func-
tioning of the equipment.

In the course of the computer anal-
ysis, about 40 fits were made to mini-
mize the difference between the ma-
trices of actual and simulated counts.
Although the matrices contain 30 X 30
bins each, some of the bins at the edges
contain so few counts (or none at all)
that the effective number of bins is
close to 750. If we knew all the physi-

Fig. 10 (bottom left). The differences be-
tween the numbers of events measured
and predicted expressed in integral num-
bers of standard deviations for the best
fit to the data for which the x? was 905.
(The bins for which the predicted num-
ber of events was less than 30 were not
used in calculating the x%.)
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cal parameters of our detection equip-
ment, if we were equally sure of the
equations describing the cosmic-ray
spectrum, and if we were, in addition,
sure that the pyramid was made of solid
limestone, then we would expect the
x? of the fit between the actual and the
simulated data to be about 750. The
earliest fits had x?’s of close to 3000,
but this important parameter dropped
to approximately 1400 by the time the
stereophotographically determined con-
tours of the pyramid exterior were made
available to us through the courtesy of
the U.A.R. Surveying Department.

Figure 8 is a matrix showing the
total number of real counts recorded
in each of the 900 3- by 3-degree
bins. Figure 9 is one of the final
simulation runs, and Fig. 10 is the
difference between Figs. 8 and 9 ex-
pressed as the closest integral number
of standard deviations. [For a bin in
which the number of counts was 2500,
an entry for 42 standard deviations
means that the actual count exceeded
the expected count by 2(2500)”* = 100.]

If these deviations are only statistical
in nature, one expects about 87 percent
of the bins to have contents of —1, 0,
or +1, about 12 percent of the bins to
have %2, and 1 percent of the bins to
have =3. There is one chance in three
of finding one bin having =4, one
chance in 200 of finding one bin with
=5, and only one chance in 3 X 104
of finding one bin with =6, if the de-
viations are due only to statistical fluc-
tuations. Thus no single bin has a sig-
nificant effect unless its contents are at
least =4. Figure 10 contains no bins
showing =4.

Detection of the Cap

The most distinctive feature of the
Second Pyramid is the cap of original
limestone casing blocks near the top.
All the casing was removed from the
Great Pyramid in the Middle Ages, but
the builders of Cairo, who “quarried”
the pyramids at that time, stopped be-
fore completely stripping the Second
Pyramid.

Before the simulation program in the
computer took account of the presence
of the cap of limestone casing blocks
on the pyramid, the difference plots
(like the plot given in Fig. 11) always
contained a central region with a pre-
ponderance of negative entries. When
the cap was properly allowed for in the
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Fig. 11. The display of Fig. 10 as it would have appeared had there been a “King’s

Chamber” in
larger than 3

simulation, the actual counts in this re-
gion were no longer systematically lower
than predicted by the computer, and
the value of x2 dropped accordingly.

Although the x2 of the fit between
the actual and simulated data was low-
ered when the features of the cap were
introduced into the simulation, this
drop does not constitute the strongest
proof- that we were in fact detecting
the cap. Figure 12 compares the mea-
sured and cosmic-ray-determined varia-
tion in thickness of the limestone cap
in two 24-degree-wide strips that run
over the top of the pyramid in the
north-south and east-west directions.
In the absence of a cap both on the
real pyramid and in the simulation, we

the pyramid 40 meters above the apparatus. The group of numbers
at the center-left (shaded area) indicates the chamber’s position.

would expect the experimental points
to lie along the zero lines of deviation.
The smooth curved lines are obtained
from the simulation program by utiliz-
ing the recently determined contours
of the pyramid. The generally good
agreement of the data points with the
prediction (Fig. 12) shows clearly that
we have detected the presence of the
cap through more than 100 meters of
limestone.

The .detection of the cap was much
more difficult than detection of the
corners; together, these two “proofs of
the method” convinced us that we could
have seen any previously unknown
chamber that might exist in our “field
of view.”

Fig. 12. This graph shows
that the cap on the top
of Chephren’s Pyramid
is observed in this ex-
periment. The quantity
plotted is the difference
between the measured
distance from the detec-
| tor to the surface of the

pyramid and the distance
calculated under the as-

sumption that the pyra-
mid has no surface ir-
regularities. The data
— points represent the dis-
4 tances indicated by the
cosmic rays and are to
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Search for Cavities

As the analysis proceeded during
about 2 months, the value of x°
dropped slowly to about 1200 as the
computer’s simulation program was
provided with better geometrical data.
[In the course of this work we con-
firmed that the cosmic-ray intensity in
the momentum range of concern (40 to
70 Gev) is isotropic and has an integral-
range power law index of —2.1.] For
most of this time we were excited by
the presence of two “positive regions”
on our matrix of differences (experi-
mental minus simulated counts). One
of these regions apparently signaled the
presence of a “King’s Chamber” direct-
ly under the apex of the pyramid, about
30 meters above the Belzoni Cham-
ber. Because of the displacement of the
Belzoni Chamber to the north and east

of the center of the pyramid’s base, the
apparent chamber mapped itself onto
the southern part of the western face
of the pyramid. The relative increase
in counting rate was about 10 percent,
as expected. The angular size of the
anomaly could be related to distance
only by assuming a certain size for the
floor area of the “chamber.” If we as-
sumed that the anomaly came from a
room the size of Cheops’s King’s Cham-
ber, it had to be about 30 meters
away, and its plan position turned out
to be almost exactly central.
Unfortunately, this large and per-
sistent signal, together with a larger
signal over a smaller angular range,
disappeared as we learned more exactly
all the dimensions of the apparatus and
of the pyramid that were important in
the simulation program. (We had not
anticipated the need for such accurate

Fig. 13. Scatter plots showing the three stages in the combined analytic and visual
analysis of the data and a plot with a simulated chamber. (a) Simulated “x-ray photo-
graph” of uncorrected data. (b) Data corrected for the geometrical acceptance of the
apparatus. (¢) Data corrected for pyramid structure as well as geometrical acceptance.
(d) Same as (c) but with simulated chamber, as in Fig. 12.
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data.) The artifacts we observed are
mentioned only to show that far from
“seeing nothing” throughout the anal-
ysis period, we had three very exciting
signals that disappeared only after the
greatest care had been taken to make
the simulation program correspond ex-
actly to the geometry of both the ap-
paratus and the pyramid.

When the simulation program was as
complete and as correct as we could
make it, the fit between the recorded
and the simulated counts was described
by a x2 of about 1100. The formal
rules of statistical analysis say quite
unequivocally that such a fit is very
unsatisfactory. But a careful look at
the matrix of differences showed that
the increase in x2 (over the expected
value of about 750) came primarily
from a rather uniform increase in dif-
ference values from south to north. If
we assumed that the cosmic-ray inten-
sity varied as 1 + d cos 6, where 6 is
90 degrees in a vertically oriented east-
west plane, and O degree for rays ap-
proaching horizontally from the north,
the x2 dropped to 905 when d had the
value of 0.15 (Fig. 10). Such a value
of d would correspond to a smooth
variation in cosmic-ray intensity, from
30 degrees north to 30 degrees south,
of =7 percent. We do not believe, of
course, that the cosmic-ray intensity
changes in such a manner, but it is
quite reasonable to assume that our
spark chamber systems had such a
small and systematic change in sensitiv-
ity.

Our confidence in such an explana-
tion was increased when we found that
the required value of the constant d
was different when we analyzed the
data in two separate samples, one mea-
sured by each pair of 3- by 6-foot
(0.9- by 1.8-meter) spark chambers.
We know that the spark chambers were
not uniformly sensitive over their whole
areas, and we discarded all data from
runs in which there were gross changes
in sensitivity from point to point in the
chambers. But we have no technique
available to compensate for slow varia-
tions in sensitivity with position. (In
our next operations, the apparatus will
be arranged so that it rotates about a
vertical axis; the linear variation in sen-
sitivity that we have just postulated will
average out in the improved apparatus.)

We made several attempts to simu-
late the 1+ d sind behavior of the
apparent cosmic-ray intensity by the
presence of a chamber above and very
close to the apparatus. But the more
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we tried, the more evident it became
that the slow north-south variation was
an instrumental effect, unrelated to any
cavities in the pyramid rock. The fit
obtained by using this slow north-south
variation shows no statistically signifi-
cant deviations from a solid pyramid.

Conclusions

To be sure that we could have de-
tected a chamber of “average size”
above the Belzoni Chamber, we pro-
grammed the computer to believe that
its simulated pyramid had such a cham-
ber filled with material whose density
was twice that of limestone. The pro-
gram then predicted that fewer muons
than usual would come from the direc-
tion of the ‘“chamber,” so that the
difference matrix showed positive num-
bers, as expected for a hollow chamber
in the real pyramid and a pyramid of
uniform density in the simulator. Figure
11 shows what we would have seen had
there been a King’s Chamber 40 meters
above the Belzoni Chamber. (The scat-
tering of muons in the rock is simu-
lated by the computer.) If the King’s
Chamber were moved farther away,
the angular width of the region having
an excess of counts would drop in-
versely with distance. We have no
doubt that we could detect a King’s
Chamber anywhere above the Belzoni
Chamber within a cone of half-angle
35 degrees from the vertical. If the Sec-
ond Pyramid architects had placed a
Grand Gallery, King’s Chamber, and
Queen’s Chamber in the same location
as they did in Cheops’s Pyramid, the
signals from each of these three cavities
would have been enormous. We there-
fore conclude that no chambers of the
size seen in the four large pyramids of
the Fourth Dynasty are in our “field
of view” above the Belzoni Chamber.

We started by using two methods of
analysis, one photographic and the
other analytic. By itself the photo-
graphic method was unsatisfactory, be-
cause effects due to the apparatus itself
were so large that they obscured any
effects from the pyramid. Although the
analytic method could succeed because
it was able to take these instrumental
effects into account, it was necessary to
“invent” a north-south variation in
sensitivity to obtain success. By com-
bining the two methods of analysis, it
is possible to obtain the sensitivity of
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the analytic method in a photographic
simulation. The combined method con-
sists of plotting the ratio of the ob-
served number of events to the pre-
dicted number, using bins that are
about 0.15 by 0.15 degrees. Figure 13
shows three such scatter plots for the
data in the cone of 35-degree half-
angle centered on the vertical. Plot 13b
corrects for instrumental effects but
does not take into account the fact that
the instrument is covered by a pyramid.
The corners of the pyramid are clearly
indicated in it. The next scatter plot
(Fig. 13c) further corrects for the pres-
ence of the pyramid with all its surface
irregularities. Figure 13d shows what
we would have seen if a “King’s Cham-
ber” had been in the pyramid, a cham-
ber the same in size and location as that
used to obtain Fig. 11. It is evident
that no effect in the data approaches
the magnitude of the effect produced
by a King’s Chamber.

We have explored 19 percent of the
volume of the Second Pyramid. We
now hope to rearrange the equipment
so that we can look through the remain-
ing 81 percent of the volume of the
pyramid. This operation will be greatly
simplified by our new understanding of
the effects of muon scattering on angu-
lar resolution. It is now apparent that
the iron absorber was not necessary for
the success of the experiment, and we
will omit it in the rebuilt apparatus.
Rotation of the detectors about the
vertical will thus be facilitated, and
the possibility of “x-raying” some of
the other large pyramids will be en-
hanced. '

Summary

Because there are two chambers in
the pyramid of Chephren’s father
(Cheops) and the same number in the
pyramid of his grandfather (Sneferu),
the absence of any known chambers in
the stonework of Chephren’s Second
Pyramid at Giza suggests that unknown
chambers might exist in this apparently
solid structure. Cosmic-ray detectors
with active areas of 4 square meters
and high angular resolution have been
installed in the Belzoni Chamber of the
Second Pyramid; the chamber is just
below the base of the pyramid, near its
center. Cosmic-ray measurements ex-
tending over several months of opera-
tion clearly show the four diagonal

ridges of the pyramid and also outline
the shape of the cap of original lime-
stone facing blocks, which gives the
pyramid its distinctive appearance. We
can say with confidence that no cham-
bers with volumes similar to the four
known chambers in Cheops’s and
Sneferu’s pyramids exist in the mass of
limestone investigated by cosmic-ray
absorption. The volume of the pyramid
probed in this manner is defined by a
vertically oriented cone, of half-angle
35 degrees, with its point resting in the
Belzoni Chamber. The explored volume
is 19 percent of the pyramid’s volume.
We hope that with minor modifications
to the apparatus the complete mass of
limestone can be searched for cham-
bers.

References and Notes

1. A. Fakhry, The Pyramids (Univ. of Chicago
Press, Chicago, 1961).

2. R. Howard-Vyse and J. S. Perring, Operations
Carried On at the Pyramids of Gizeh (London,
1840-42), 3 vols.

3. L. W. Alvarez, Lawrence Radiation Laboratory
Physics Note 544 (1 March 1965).

4. V. Perez-Mendez and J. M. Pfab, Nucl. Instr.

Methods 33, 141 (1965).
. E. P, George, Commonw. Eng. (July 1955).
. The Joint U.A.R.-U.S.A. Pyramid Project has
been fortunate in the strong support it has
received from many individuals and organiza-
tions on two continents. The initial and con-
tinuing interest of Dr. Glenn T. Seaborg was
reflected in the financial support of the project
by the U.S. Atomic Energy Commission during
the period when the detection equipment was
designed and built at the University of Cali-
fornia’s Lawrence Radiation Laboratory. The
U.A.R. Department of Antiquities extended
every courtesy to members of the project, and,
in addition to inviting us to install our equip-
ment in the Second Pyramid, they put at our
disposal an attractive and conveniently located
building which served as our laboratory and
general headquarters. The Smithsonian Insti-
tution was generous in its support of the
project, particularly in making available travel
funds that permitted project members from
our two countries to work together both in
Berkeley and in Cairo. The Ein Shams Uni-
versity and the University of California both
supported the project in many ways, and we
give special thanks to Vice Rector Salah Kotb
and Chancellor Roger Heyns. The IBM Cor-
poration, the National Geographic Society, the
Hewlett-Packard Company, and Mr. William
T. Golden made important contributions to the
project for which we will always be grateful.
The U.A.R. Surveying Department made ac-
curate measurements of all external and in-
ternal features of the Second Pyramid, without
which we would have been severely handi-
capped. The overall guidance of the project
was vested by our two governments in a
“Committee of the Pyramids,” under the
chairmanship of Dr. Salah Kotb. We are in-
debted to the distinguished members of this
committee for the warmth and understanding
they displayed in the exercise of their respon-
sibilities. All of us take pride in the fact that
the friendly spirit in which we started the
project survived not only the perils that con-
front any interdisciplinary or intergovernmental
effort but also a break in diplomatic relations
between our two countries. In conclusion, we
acknowledge important assistance from Ray-
mond Edwards, Sharon Buckingham, Fred
Kreiss, William E. Nolan, Kamal Arafa,
Sayed Abdel Wahab, Mohamed Tolba, Aly
Hassan, August Manza, and Vice Chancellor
Loy Sammet.

D

839



