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Outline

1. Introduction
2. Soft physics and global event characterization

Charged particle multiplicity
pT spectra - tracking
Azimuthal asymmetry (Flow)

3. High pT Probes
High pT Jets
jet- γ, jet-Z0

µ reconstruction: Z0

Quarkonia (J/ψ, ϒ)

4. Forward Physics
Gluon Saturation, Limiting Fragmentation 
Ultra Peripheral Collisions
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The reference: RHIC

Elliptic FlowMultiplicity

PHOBOS,  Nucl. Phys. A757 (2005) 28

Applicability of thermodynamics

BRAHMS,  Nucl. Phys. A757 (2005) 1-27

Jet Suppression

STAR,  PRL 91, 072304
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From RHIC to LHC

Vitev,hep-ph/0310274

• Factor 28 increase in energy to 
√sNN=5.5 TeV

• High Luminosity
• Large Cross sections

– High pT particles
– Jets, which are now directly 

identifiable
– J/ψ, Z0 and ϒ-family production

Accardi, hep-ph/0211314

thevents/mon 1061 8×= .
)(AB

bµ

RHIC

Vogt, hep-ph/0205330 

LHC
ϒ
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LHC kinematics

J/ψ

Z0

ϒ

Q
2

Q = M

saturation
Stirling, Eur. Phys. J. C 14, 133 (2000) 

• LHC provides access to the widest range of Q2 and x, including 
regions where Z0 and ϒ will be accessible, and low x where gluon 
saturation is expected
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CMS detector - |η|<2.4

MUON BARRELCALORIMETERS
ECAL

Scintillating 
PbWO4 crystals

HCAL
Plastic scintillator/brass
sandwich

Drift Tube
Chambers (DT)

Resistive Plate
Chambers (RPC)

Silicon Microstrips
and Pixels

Si TRACKER
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Forward Region

ZDC

HAD

EM

(8.3 <

Forward HCal

(5.3 < η < 6.7)
TOTEM

(3 < |η| < 5.2)

(z = ± 140 m)

CASTOR

|η|)

(5.2 < η < 6.6)
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CMS coverage

Q
2

HCAL (Barrel+Endcap+Forward)

Sub detector Coverage
Tracker, muons | η | < 2.4

ECAL + HCAL | η | < 3.0
Forward HCAL 3 .0< | η | < 5.2
CASTOR 5.2 < | η | < 6.6
ZDC 8.3 < |η|
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Event Characterization: Centrality
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CMS Note 2001-055

• Forward HCal will provide correlation between ET and event centrality
• In addition ZDC and Castor will improve the centrality determination and 
increase various physics triggers at large b.
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Centrality cont.

• Simulations of the calorimeter 
collisions indicate that over 80% 
of ET will be detected.

• Shown on the left
– 500 min bias Ar-Ar Hijing 

collisions (3 < η < 5) 
– Upper plot is the relationship 

between the simulation and 
reconstructed (HF) transverse 
energy vs. the impact 
parameter. 

– The lower plot is the accuracy 
(σE/<ET>) of the impact 
parameter measurement. 

CMS Note 2001-055



11

Charged particle multiplicity 

Simulated central Pb+Pb event: dNch/dη|η=0 ~ 3000

• Tracker : Pixel layers and the silicon 
strip counters.

– Pixel detector: 3 pixel barrel 
layers  and 2 endcap disks in 
forward and backward directions. 
Barrel layers cover up to |η| < 2.1. 

–T he barrel layers contain ~ 9.6, 
16, and 22.4 million pixels, 
respectively. 

Pixels Inner
Strips

Outer
Strips
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Charged particle multiplicity cont. 

• High granularity pixel detectors

• Pulse height in individual pixels to 
reduce background

• Very low pT reach, pT > 26 MeV 

• On the left
– Single layer hit counting in 
innermost pixel barrel layer
– cosh η dependence of 
SumADC
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Tracking Performance
dN

/d
p T Central Pb+Pb dNch/dη|η=0 ~ 5000 • Top: charged particle spectra

• Bottom: track reconstruction 
efficiency as function of pT.

– Pb+Pb collisions dNch/dy ~ 
3000

– Left : track quality cuts 
optimized for low fake track 
rate

– Right: cuts optimized for high 
efficiency

Reconstructed Tracks

Fake Tracks Reconstructed Tracks

Fake Tracks
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Tracking resolution

Track-pointing Resolution
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• With current studies: good 
tracking purity and efficiency 
down to pT ~ 1GeV/c.
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Flow

dN/d(φ −ΨR ) = N0 (1 + 2V1cos (φ−ΨR) 
+ 2V2cos (2(φ−ΨR)) + ... )
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Flow measurements in CMS

CMS Note 2003-019CMS Note 2003-019

σ =0.19 rad

• Left: difference between generated and reconstructed reaction plane angle for Pb+ Pb 
collisions b = 6 fm
• Right: reconstructed energy deposition in the barrel and endcap regions for 
electromagnetic and hadronic calorimeters as function of  as function of the azimuthal angle 
for b = 6 fm
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Jet Reconstruction

• Use calorimeters for jet reconstruction
• Jet ET ~100GeV, background dNch/dy ~ 5000
• Event-by-Event η-dependent background 
subtraction+ iterative jet cone-finder algorithm

• Jet resolution: 
− σ(φrec- φgen) = 0.032;  
− σ(ηrec- ηgen) = 0.028
−σ(ΕΤrec- ΕΤgen) = 16 %Jet in pp after pileup subtraction

Jet superimposed on Pb + Pb background Jet in Pb + Pb after pileup subtraction

CMS NOTE 2006/050
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Efficiency, Purity vs. Jet Energy

• Reconstruction of  50-300 GeV Jets in
Pb-Pb background

• Efficiency: number of events with true  
reco. Jets/Number of all generated 
events

• Purity : number of events with true reco. 
QCD Jets/ Number of all reco. Jet events 
(true+fake).

• Threshold of jet reco. ET >30 GeV.

CMS NOTE 2006/050
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Jet studies using calorimeter + tracking

Azimuthal correlations

Jet Fragmentation: z distribution Jet Fragmentation: pT with respect to jet axis
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dNch/dη|η=0~3000 + one 30 GeV jet/event

Pb+Pb dNch/dη|η=0~5000 + 100 GeV jets Pb+Pb dNch/dη|η=0~5000 + 100 GeV jets

∆φ (rad)

• Some example Jets observables 
using calorimetry
– Jet cross sections 
– Jet - Jet correlations
– Jet- γ/Z correlations

• Calorimetry and particle reconstruction
– Jet fragmentation
– Jet shape 
– Tagged heavy quark jets
– Inclusive pT spectra
– Back-to-back particle correlations
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Measuring muons
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Z0 production

• Z0-µµ can be reconstructed 
with high efficiency

• A probe to study nuclear 
shadowing and parton 
energy loss

• Z0 also proposed as 
reference to ϒ production.

– Nuclear effects may 
depend on mass MZ>Mϒ

• Different production 
mechanisms:
– Z0: antiquark-quark, 

quark-gluon and 
antiquark-gluon.

– ϒ: gluon-gluon.

CMS Note 2000-060
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jet- γ and jet-Z0

• Study of jet quenching with “calibrated” energy:
– On average Z0 or γ ET and jet ET should 

balance
– Z0 and γ can be reconstructed with very good 

ET resolution
• γ - jet: Larger background from leading π0 in QCD 

dijets
• Z – jet: Cleaner but lower rates

Simulation dN/dy ~7000 
ETjet, γ > 120GeV in Barrel 

ET
γ/πo - ET

Jet (GeV)

isolated π0+jet

# 
Ev

en
ts

 /\
4 

G
eV

ET
γ/π0-ET

Jet (GeV)

< ∆E>= 8 GeV
< ∆E>= 4 GeV
<∆E>= 0 GeV

π0+jet

1 month at
1027cm-2s-1

Pb+Pb

Simulation dN/dy ~7000 ETjet, γ > 120GeV in Barrel 
For different values of jet energy loss (∆E)

CMS Note 2000-060
CMS Note 2000-060
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Quarkonia: probe of high-density QCD media

H.Satz, hep-ph/0512217 

• J/ψ at LHC will clarify SPS/RHIC 
suppression (ε ~ 30 GeV/fm3)
• Dissociation = hot QCD matter 
thermometer

Charmonium spectral function vs T
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Simulation studies

• Signals (J/ψ,ϒ): CEM, NLO-pp, CTEQ5M+EKS98 PDF, TAA-scaled
• Light-q background (π,K): HIJING normalized to dNch/dη=2500, 5000
• Heavy-Q background (c,b): NLO-pp, CTEQ5M+EKS98 PDF, TAA-scaled
• σJ/ψ= 35 MeV/c2 in barrel+endcap (i.e. both muons |η| < 2.4)

Kodolova, Bedjidian CMS Note-2006/089

Signal+Background Estimate background using
same sign di-muons

Subtracted background
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ϒ production in AA at the LHC

• Large cross-sections: dσ/dy ~ 20 x RHIC
• ϒ melts only at LHC: TD~ 4 Tc
• ϒ unaffected by final-state interactions

– Small hadronic absorption
– Small # bbar pairs → small ϒ regeneration

• ϒ suppression will be a “cleaner” probe than J/ψ
• ϒ spectroscopy: 
TD (ϒ’) ~ TD (J/ψ)  - ϒ’/ ϒ vs pT very sensitive to system temperature & size

minijet model parton gas model

Gunion, Vogt, NPB 492 (1997) 301
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ϒ mass spectra simulations

• Multiplicity  dNch/dη ~ 5000 
• σϒ= 54 MeV/c2 (barrel), and σϒ= 90 MeV/c2 (barrel+endcap) 

Barrel:
(both muons 
|η| < 0.8)

Barrel+ 
Endcap:
(bothmuons 
|η| < 2.4)

Kodolova, Bedjidian CMS Note-2006/089
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Forward Physics: Gluon saturation region

• New regime of QCD is expected 
to reveal at small x due to 
effects of large gluon density

• Forward measurements will be a 
good test ground for this physics

Q
2

ZEUS data for gluon distribution
In partons

Sub detector Coverage

Forward HCAL 3 .0< | η | < 5.2
CASTOR 5.2 < | η | < 6.6
ZDC 8.3 < |η|

McLerran, hep-ph/0311028
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Limiting Fragmentation

• At RHIC limited fragmentation can be
explained by gluon saturation (Clolor Glass 
Condensate) model.

– Data PHOBOS 200 and 130 GeV AuAu
– Model McLerran-Venugopalan

• This can be measured also at LHC for larger 
gluon density region

Phys. Rev. D 49, 2233 (1994 )

Castor Coverage
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Ultra-Peripheral collisions γγ cross sections

Meson or
lepton/quark pair

A

A
A

A γ
γ

ZDC to trigger + two muons in the central detector
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γγ Physics Cont.

• Light quarks
– Difficult to measure at CMS because of low pT (~ 50 MeV) and low rate, 

challenge for triggering
– ZDC + multiplicity trigger a la STAR?

Phys. Rev. Lett. 89 (2002) 272302 

STAR

STAR
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Heavy Ion Physics Program in CMS

Soft physics and global event characterization
Centrality and good event selection
Charged particle multiplicity
Azimuthal asymmetry (Flow)
Spectra + Correlations

High pT Probes
High pT Jets - detailed studies of jet fragmentation, centrality 
dependence, azimuthal asymmetry, flavor dependence, leading 
particle studies
High energy photons, Z0

jet-γ, jet-Z0, multijet events
Quarkonia (J/ψ, ϒ) and heavy quarks

Forward Physics
Limiting Fragmentation, Saturation, Color Glass Condensate
Ultra Peripheral Collisions
Exotica
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Backup Transparencies
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Results At RHIC Energies

Phys Lett. B. 518, 41 (2001);  J. Phys G28, 1745 (2002)

• Can fit each energy with a common chemical “freeze-out” temperature, 
Tch, and baryon chemical potential µB.
• Suggests a high degree of chemical equilibrium (and thermalization) at 
the point where particles are “frozen-out” (created).
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Nuclear modification factor RHIC to LHC
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Background Subtraction Algorithm

Event-by-event background subtraction: 
• Calculate <ET

Tower(h)> and DTower (h) for each 
h ring 

• Recalculate all ET
Tower tower energies:

ET
Tower   = ET

Tower – Et
pile-up

Et
pile-up =  <ET

Tower(h)>  +  DTower (h)

• Negative tower energies are replaced by zero

• Find Jets with ET
jet  > Et

cut using standard iterative cone algorithm using new 
tower energies

• Recalculate pile-up energy with towers outside of the jet cone
• Recalculate tower energy with new pile up energy
• Final jets are found with the same iterative 

cone algorithm ET
Jet   = ET

cone – Et
pile-up new
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Jet Definitions

• Parton jet
– This is what we can calculate

• Final state particle jet
– Fragmentation/hdronization
– Non-pertubative
– MC generators rely on 

parametrizations of experimental 
data

• Calorimeter Jet
– This is what we measure in the 

detector

• Need to associate final state 
particles with initial parton

– No unique way of doing this!
– Jet algorithms 
– => Jet Calibration
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Jet Resolutions

∆η

∆φ

• ∆η, ∆φ better than size of calorimeter tower 
(0.087x0.087)

• ET resolution ~16% at 100GeV
• Further improvement can be achieved by adding 

tracker information
– pT measurement of tracks is more precise 

than the response of the calorimeter
– Recover charged tracks that are bent out of 

the jet cone by the magnetic field

∆ET
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J/ψ, ϒ acceptances

• J/Ψ accepted above pT~2 GeV/c (low-pT muons absorbed in material at 
y=0, but punchthrough at y~2). High-pT acceptance ~15%

• ϒ accepted (~35%) down to pT=0 GeV/c. High-pT acceptance ~15%

ac
ce

pt
an

ce
ac

ce
pt

an
ce

J/Ψ

η

pT

ϒ

J/Ψ

Improved low pT
J/Ψ acceptance
at forward rapidities

pT (GeV/c)
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Data Acquisition and Trigger

Onli
ne 
Far
m

switchswitch

bufferbuffer

Level 1 hardware trigger 
– Muon track segments
– Calorimetric towers
– No tracker data
– Output rate (Pb+Pb): 1-2 kHz 

comparable to collision rate

High level trigger 
– Full event information available 
– Every event accepted by L1 sent to an online farm of 

2000 PCs
– Output rate (Pb+Pb): ~ 40 Hz
– Trigger algorithm same or similar to offline 

reconstruction
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Electromagnetic Calorimeter
BECALEECAL |η|< 3 (1.5 barrel)

• 76000 PbWO4 crystals
– Granularity in ∆η x ∆φ :
– 0.0174 x  0.0174 (Barrel) and 
– 0.0174 x 0.0174 to 0.05x0.05 (Endcap)

• Endcap with preshower for γ/p0 separation
• Details in CMS Technical Design Reports
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• Barrel (HB) and Endcap (HE): Cu/Scintillator
• Forward (HF): Fe/Cerenkov(fiber)
• High granularity: ∆η x ∆φ

0.087 x 0.087 (barrel)
0.087 - 0.35 x 0.087 - 0.175 (endcap) 
0.152 - 0.3   x 0.175 (HF)

• 5.15 interaction lengths at η=0
• Dynamic range: 5 MeV-3 TeV

HF: 3<|η|<5

HB, HE: |η|<3

π Energy Resolution
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Granularity
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Zero Degree Calorimeter

Tungsten-quartz fibre structure
electromagnetic section: 19X0
hadronic section 5.6λ0
Rad. hard to ≈20 Grad (AA, pp low lum.) 
Energy resolution: ≈10% at 2.75 TeV
Position resolution: ≈2 mm (EM sect.)
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CASTOR
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TOTEM (T2)
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Quarkonia acceptances

µ+µ- µ+µ- µ+µ-
e+e-

-4<η<-2.5

ϒJ/ψ

-4<η<-2.5

ac
ce

pt
an

ce
 (%

)

J/ψ ϒ

Andrea Dainese Hard Probes 2006



47Andrea Dainese Hard Probes 2006Charmonia Performance

ALICE µ+µ- ALICE e+e- CMS µ+µ- ATLAS µ+µ-

acc. η -4 < η < -2.5 |η| < 0.9 |η| < 2.5 |η| < 2

perf. ψ, ?ψ’ ψ, ??ψ’ ψ, ?ψ’ ψ, ψ’

pt J/ψ 0-20 GeV 0-10 GeV few-20 GeV --

65 MeV

J/ψ, ψ’
150,  7 245, -- 313,  -- 60,  --

M res. 35 MeV 37 MeV 70 MeV

Bkg input: dNch/dy~2500-4000 in central Pb-Pb.                for 1 month

central central central

BSS +/

min. bias

BSS +/
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