Soft-hadron Physics at RHIC

Results from the Relativistic Heavy Ion Collider (Part II)

First joint Meeting of the Nuclear Physics Divisions of APS and JPS Maui, Hawaii, 2001 Oct. 19

金田稚司 / Masashi Kaneta LBNL

MKaneta@lbl.gov http://www.rhic.bnl.gov/~kaneta/

3 Years ago, in JPS meeting

• Summary of SPS results by M.K.

金田雅司, 第一回日米物理学会含同核物理分科会 Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS

Outline

3

Introduction

ĸがロボがロボがロがなロボがロがなロがなロがでしが?

- Particle ratios / yield
- Identified single particle spectra
- Event anisotropy
- Particle correlation (HBT)
- Summary
- Open issues

Introduction

- Goal
 - Study bulk properties of matter under extremely high energy and particle density

 Information of observable come from Parton / hadron level

4

- Focus of this talk
 - Low p_T and mid-rapidity data

Particle ratios/yield

5

- Anti-baryon/baryon ratio and net-proton
 - Stopping or transparent?

ĸなわめなわめなわめなわめなわめなわめなわめなわめなわ

- Particle ratios from hadrons
 - Chemical freeze-out parameters

Anti-Baryon/Baryon ratio

301

- B/B <1
 - Not baryon free

 Less centrality dependence

金田稚司,第一回日米物理学会含同核物理分科会 Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS

Net-proton

STAR data : from this meeting BRAHMS data : Quark Matter 2001 Inclusive net-proton

7

 Net-proton increases with centrality

Chemical freeze-out model

Hadron resonance ideal gas

and the states a state of the states a state of the states the states of the states of

Refs. J.Rafelski PLB(1991)333 J.Sollfrank et al. PRC59(1999)1637

Particle density
of each particle
$$\rho_i = \gamma_s^{|s_i|} \frac{g_i}{2\pi^2} T_{ch}^3 \left(\frac{m_i}{T_{ch}}\right)^2 K_2(m_i/T_{ch}) \lambda_q^{Q_i} \lambda_s^{s_i}$$

 $\lambda_q = \exp(\mu_q/T_{ch}), \quad \lambda_s = \exp(\mu_s/T_{ch})$

- Q_i : 1 for u and d, -1 for \overline{u} and \overline{d}
- s_i : 1 for s, -1 for \overline{s}
- g_i : spin-isospin freedom
- m_i : particle mass

- T_{ch} : Chemical freeze-out temperature
- μ_q : light-quark chemical potential
- μ_{s} : strangeness chemical potential

8

 γ_s : strangeness saturation factor

All resonances and unstable particles are decayed Comparable particle ratios to experimental data

Chemical fit result

Chemical freeze-out parameters $T_{ch} = 179 \pm 4 \text{ MeV}$ $\mu_B = 51 \pm 4 \text{ MeV}$ $\mu_S = -0.8 \pm 2.0 \text{ MeV}$ $\gamma_S = 0.99 \pm 0.03$ $\chi^2/\text{dof} = 1.5$

M.Kaneta, Thermal Fest (BNL, Jul 2001), N.Xu and M.Kaneta, nucl-ex/0104021

Chemical freeze-out

 Beam energy dependence

- Temperature increases
- Baryon chemical potential decreases
- At RHIC
 - Being close to phase boundary
 - Fully strangeness equilibration (γ_s~1)

Identified single particle spectra

- Transverse momentum distributions
 - Boltzmann-like distribution
 - Information of thermal (kinetic) freeze-out
 - Temperature
 - Radial flow
 - The pressure gradient generates collective motion

m_T distribution at RHIC

金田雅司,第一回日米物理学会合同核物理分科会 Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS

Slope parameter vs. centrality and mass

෧෦෫෨෨ඁ෪෨෪෪෨෪෪෨෪෪෨෨෪෨෨෪෨෨෪෨෨෪෨෨෪෯෨෮෪෪෯෮෮෪෪෨෮෪෯෮෮෪෪෯෮෮෪෪෯෮෮෪෪෯

- Inverse slope parameter
 - Increasing
 - with centrality
 - with particle mass

Radial flow and temperature

to STAR Preliminary data

- Spectra are describe by T_{th} and $<\beta_r>$
- Also, hydrodynamical model can reproduce the data

The model is from E.Schenedermann et al. PRC48 (1993) 2462 based on Blast wave model

T_{th} and $<\beta_r >$ systematic

n a start a st

 $<\beta_r>$

- saturates around AGS energy
- Increased at RHIC?

んだのめたののためのためのためのためのためのためのためのた

• T_{th}

- saturates around AGS energy
- behavior in (1-10 GeV) predicted by Stocker et al. in 1981 and Hagedorn

 Need 200GeV data and lower energy data

All hadrons are in equilibration?

 Multi-strange baryon seems to have early freezeout at SPS

red red red red red red red red red

- How about at RHIC?
 - Yes. Same trend

Event anisotropy

- The pressure gradient generates collective motion (aka flow)
 - Central collisions

- radial flow
- Peripheral collisions
 - radial flow and anisotropic flow

෫෯ඁ෧෯෯෧෯෯෧෯෯෧෯෯෧෯෯෧෯෯෧෯෯෧෯෯

金田雅司,第一回日米物理学会合同核物理分科会 Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 17

v₂ vs. centrality at RHIC

(PHOBOS : Normalized Paddle Signal)

Central region
 follows
 Hydrodynamical
 model at RHIC

v₂ of identified particle

- Blast wave mode and hydrodynamical model can describe data in low $p_{\rm T}$ (~2GeV/c)
- Mass dependence
 - Typical hydrodynamic behavior

• Elliptical flow v_2 increases with collision energy

Particle correlation (HBT)

 Probe of the space time extent of heavy ion collisions

れなしかなしめなしのなやしかなしかなしかなしやなしやな

- Radius parameters
 - space-time geometry of the emitting source
 - dynamical information (e.g. collective flow)

Radius parameters

• similar radius with SPS!

 strong spacemomentum correlation?

Radii vs. p_t

 Blast wave model describes p_T dependence

- Consistent T_{th} and $\langle \beta_r \rangle$ with them from spectra and v_2
- However
 - Hydrodynamical QGP + (uRQMD or RQMD) can not reproduce R_o<R_s

model: 2.4 R=13.5 fm, τ =1.5 fm/c 2.2 2.0 ᠷᢅ᠆ᠷ 1.8 'R_{side} 1.6 1.2 1.0 0.9 PRL86 (2001) 3981 0.8 S. Soff, S.A. Bass and =200 MeV, at phase-boundary 0.6 200 MeV, with hadronic rescattering A. Dumitru 0.8 =160 MeV, at phase-boundary 0.25 n 0.2 0.4 $T_c = 160 \text{ MeV}$, with hadronic rescattering 0.0 0.1 0.2 0.3 0.5 0.4 K_T (GeV)

Blast wave model : Mike Lisa, ACS Chicago, 2001

▲▼ STAR PRL87(2001) 082301

entrostrostrostrostrostrostro

○○ PHENIX Preliminary from this meeting

23

金田稚司, 第一回日米物理学会含同核物理分科会 Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS

- Many new interesting results from RHIC year 1
- Not yet baryon free (p/p<1)
- Chemical freeze-out
 - $T_{ch} \sim 180 \text{ MeV}$, $\mu_B \sim 50 \text{ MeV}$, $\mu_s \sim 0 \text{ MeV}$, $\gamma_s \sim 1$ (central)
 - Full strangeness equilibration!
 - Close to phase boundary!
- Thermal freeze-out
 - Consistent results from spectra, HBT, and v₂
 - $T_{th} \sim 100 140 \text{MeV}, <\beta_r > \sim 0.5$
 - Larger flow than one at SPS
 - Success of hydrodynamical approach
 - m_{T} spectra, v_{2} ,and HBT (but only by blast wave model)

- All hadrons are at same thermal freeze-out?
 - π , K, p, and Λ

- Seem to have common T_{th} and radial flow
- Inverse slope parameters increase with mass
- However...
 - Cascade (Ξ) seems to freezeout early
- Multi strange particle is one of keys for information of early stage

とのないのないのないのないのないのないのないの。

- What stage is the origin of strong flow?
 - Partonic and/or hadronic level?

- We don't have a perfect microscopic model to describe data!
- Thermal/statistical model assumes ideal gas
 The source may not be ideal gas in real world
- How to connect from hadron observable to parton level?