π^{0} and photon v₂ study in $\sqrt{s_{NN}} = 200 \text{GeV}$ Au+Au collisions

Hisayuki Torii ShinIchi Esumi Saskia Mioduszewski Edouard Kistenev

for the PHENIX Collaboration RIKEN-BNL Research Center

or a corración de la

Why Event Anisotropy?

- Because of sensitive to collision geometry
 - In low $p_T (\sim < 2 \text{ GeV/c})$

- Pressure gradient of early stage
- Hydrodynamical picture is established
- In high p_T (>~2 GeV/c)
 - Energy loss in dense medium (Jet Quenching)
 - Partonic flow(?)

Here we focus on ellipticity of azimuthal momentum distribution, V₂ (second Fourier coefficient)

Masashi Kaneta, RBRC, BNL

金田

෯෧෦෨෧෦෨෧෯෧෮෯෧෮෯෧෮෯෧෮෯෧෮෯෧෮෯ඁ෧෯෯෮෯෯෮෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯

- Lead Scintillator and Lead Glass EMCs
 - Gamma measurement ($\pi^0 \rightarrow \gamma \gamma$)
- BBCs and ZDCs
 - Collision centrality determination
- BBCs
 - Reaction plane determination and
 - Its resolution correction

Side View

North

PHENIX Detector - Second Year Physics Run

金田雅司

Collective flow and QGP properties, RIKEN-BNL workshop (2003/11/17-19)

MuID

MuTr

South

MuID

<u>ම්යේදීය මියේ මයේ මග්මය මග්මය මග්මය මග්මය මග්ම</u>ය. මග්ම සිටුම් සිටුම් සිටුම් සිටුම් සිටුම් සිටුම් සිටුම් සිටුම් සිට

- Lead Scintillator and Lead Glass EMCs
 - Gamma measurement ($\pi^0 \rightarrow \gamma \gamma$)
- BBCs and ZDCs
 - Collision centrality determination
- BBCs
 - Reaction plane determination and
 - Its resolution correction

金田雅

- Lead Scintillator and Lead Glass EMCs
 - Gamma measurement ($\pi^0 \rightarrow \gamma \gamma$)
- BBCs and ZDCs
 - Collision centrality determination
- BBCs
 - Reaction plane determination and
 - Its resolution correction

金田雅

3

- Lead Scintillator and Lead Glass EMCs
 - Gamma measurement ($\pi^0 \rightarrow \gamma \gamma$)
- BBCs and ZDCs
 - Collision centrality determination
- BBCs
 - Reaction plane determination and
 - Its resolution correction

金田雅

3

BBC in PHENIX

PbGI and PbSc EMC's

189059059059059059059059059°059°059059°059059059059059059059059059

- 2 Sectors PbGI
- 1 PbGI Sector
 - 16x12 supermodules (SM)
- •1 PbGI SM
 - 6x4 towers
 - Separate reference system
- •1 FEM
 - Reads out 2x3 supermodules or 12x12 towers

- 1 Sector = 6x3 Supermodules (SM)
- 1 PbSc SM = 12x12 towers
- PbSc towers: 5.52 x 5.52 x 33 cm³ (18 X₀)
- 15552 blocks total
 - 1 PbSc tower:
 - 66 sampling cells
 - 1.5 mm Pb, 4 mm Sc
 - Ganged together by penetrating wavelength
 - shifting fibers for light collectionReadout: FEU115M phototubes

全 和 和 列 Masashi Kaneta, RBRC, BNL

Method of π^0 and Photon v_2 Measurement

$$E\frac{dN^{3}}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T} dp_{T} dy} \left(1 + \sum_{n=1}^{\infty} 2\frac{v_{n}^{measured}}{\sqrt{2}} \cos\left[n(\phi - \Psi_{r})\right]\right) \text{ where } n = 1, 2, 3, \dots$$

event anisotropy parameter measured azimuthal angle of the particle

 $v_n^{real} = v_n^{measured} / (reaction plane resolution)_n$

Note: the detail of reaction plane definition will be found in **nucl-ex/0305013**

- Define reaction plane by charged multiplicity on Beam-Beam Counters
- Photon
 - Obtained second harmonic coefficient from $<\cos[2(\phi-\Phi_r)]>$
- π⁰

金田雅司

- π^0 reconstruction and subtract background (combinatorial and the others)
 - For each $p_{T'}$ azimuthal angle, centrality
- Commbine both information
 - Counting number of π^0 as a function of ϕ - Φ_r and fit by the formula

Reaction Plane Defined by BBC's

෨ඁ෦෦෧ඁ෪෦෧෪෧෪෧෪෧෪෧෪෧෪෧෪෧෪෧෪෧෪෧෪෧෪෧ඁ෫ඁ෫ඁ෪෪෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯

- BBC north and south (η=3.1-4.0) are used
- Resolution calculation
 - Two sub-events are selected
 - North and south

金田雅

a

Photon and π^0 I dentification

Requirement for photon

°D&&D&&D&&D&&D&&D&&D&&D&&D&&D&&D&

- Dead and noisy EMC towers are removed for the analysis
- PID cuts: $\chi^2 < 3$ for photon probability to shower shape
- |TOF| cut to reject hadron
- No charged track hit within cluster isolation window
- For π^0

金田雅

- Photon ID +
- Asymmetry cut: $|E_1 E_2| / (E_1 + E_2) < 0.8$
- Combinatorial background is estimated by event mixing
 - Classes categorized for event mixing
 - centrality : every 10%
 - BBC Z Vertex : every 10cm in ±30cm
 - reaction plane direction in PHENIX detector : 24 bins in $\pm\pi$

Masashi Kaneta, RBRC, BNL Collective flow and QGP properties, RIKEN-BNL workshop (2003/11/17-19)

Example Plots from the $\pi^0 v_2$ Analysis Procedure

Invariant mass of $\gamma\gamma$ from same event and mixed event (classed by reaction plane, centrality, vertex position)

Example Plots from the $\pi^0 v_2$ Analysis Procedure

Invariant mass of $\gamma\gamma$ from same event and mixed event (classed by reaction plane, centrality, vertex position)

金田雅

Example Plots from the $\pi^0 v_2$ Analysis Procedure

Invariant mass of $\gamma\gamma$ from same event and mixed event (classed by reaction plane, centrality, vertex position)

金田雅

a

V_2 VS. p_T vs. Centrality from 200GeV Au+Au

or hold he of he of he of he

30

Statistical error is shown by error bar

Systematic error from π^0 count method and reaction plane determination is shown by gray box

• Charged $\pi + K v_2$ consistent with $\pi^0 v_2$ in $p_T < 4 GeV/c$

會 確 司 Masashi Kaneta, RBRC, BNL

V_2 VS. p_7 vs. Centrality from 200GeV Au+Au

orkeorkorkkorkk

Statistical error is shown by error bar

Systematic error from π^0 count method and reaction plane determination is shown by gray box

The charged π and $K v_2$ are shown only with statistical errors

• Charged $\pi + K v_2$ consistent with $\pi^0 v_2$ in $p_T < 4 \text{GeV/c}$

V_2 VS. p_7 (Minimum Bias) from 200GeV Au+Au

A LOPAR LOPAR IO

Identified particle v_2 up to $p_T = 10 \text{GeV/c}$ •

V_2 VS. p_7 (Minimum Bias) from 200GeV Au+Au

Identified particle v_2 up to $p_T = 10 \text{GeV/c}$ •

A LOPY'LOPY'L

V_2 VS. p_7 (Minimum Bias) from 200GeV Au+Au

Identified particle v_2 up to $p_T = 10 \text{GeV/c}$ •

PLADY JOPY 10

Comparison with K^0_S and Λ (STAR)

STAR data from nucl-ex/0306008

Quark Coalescence?

- Phys. Rev. Lett. 91 (2003) 092301, D.Molnar and S.A. Voloshin
- qq→meson, qqq(qqq)→Baryon

$$v_{2,M}(p_{\perp}) \approx 2v_{2,q}\left(\frac{p_{\perp}}{2}\right), \qquad v_{2,B}(p_{\perp}) \approx 3v_{2,q}\left(\frac{p_{\perp}}{3}\right),$$

- How data looks like?
- Non-strange and strange meson and baryon seems to be merged around p_T/n_{quark} ≈1-3GeV/c
- But we need more statistics to conclude it

金田雅

Quark Coalescence?

෧ඁ෩ඁ෪෧෪෧෧෪෧෧෪෧෧෪෧෧෪෧෧෪෧෧෪෧෪෪෧෪෪ඁ෧෪෪ඁ෧ඁ෫ඁ෪ඁ෨෪෯෧෪෯෧෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯

- Phys. Rev. Lett. 91 (2003) 092301, D.Molnar and S.A. Voloshin
- qq→meson, qqq(qqq)→Baryon

$$v_{2,M}(p_{\perp}) \approx 2v_{2,q}\left(\frac{p_{\perp}}{2}\right), \qquad v_{2,B}(p_{\perp}) \approx 3v_{2,q}\left(\frac{p_{\perp}}{3}\right)$$

- How data looks like?
- Non-strange and strange meson and baryon seems to be merged around p_T/n_{quark} ≈1-3GeV/c
- But we need more statistics to conclude it

金田

Photon v₂ from 200 GeV Au+Au

Au+Au 200GeV \rightarrow photon

全 通 発 司 Masashi Kaneta, RBRC, BNL

Photon v₂ and Hadron v₂

෧෧෦෧෧෧෪෧෧෪෧෧෪෧෧෪෧෧෪෧෧෪෧෧෪෧෧෪෧෪෫ඁ෧෪෪ඁ෧ඁ෫ඁ෫ඁ෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯෮෯෯

• Photon v_2 shows similar tendency with π^0

– need more statistics to see photon v_2 after π^0 (and also η) decay effect

金田雅

π^0 Decay Effect for Photon v_2

• Tool is ready, however..

金田

ā

– We need more statistics to fix $\pi^0 v_2$ distribution as a function of p_T and also centrality

Summary

- $\pi^0 v_2$ at RHIC
 - First measurement
 - $\ln p_T = 1-10 \text{ GeV}/c$
 - v_2 of the highest p_T from identified particle
 - Charged $\pi~v_2$ consistent with $\pi^0~v_2$
 - In *p_T*=1-3GeV/*c*
 - Minimum bias data shows finite $\pi^0 v_2$
 - Up to $p_T \sim 8 \text{ GeV}/c$
- Photon v₂

金田雅

- increasing with pT up to ~2GeV/c
- and saturated then decreasing(?)
- We hope to see photon v_2 after decay effect subtraction with more data

Outlook

- Feature plan of analysis
 - Using high p_T gamma trigger in run2 Au+Au data
 - We will have about twice statistics in high p_{τ}
 - need to study trigger bias
 - therefore, present analysis results are from minimum bias trigger events
 - ηv_2 will be also available by same method
 - PHENIX has photon v₂ also
 - Photon v_2 after hadron decay effect, especially low p_T !
- RHIC run4 Au+Au, it will be
 - Much more statistics
 - Detail study of v_2 shape around p_T =2-4GeV/c
 - Much higher p_T

金田雅

- We want to know where is the end of finite v_2 in very high p_T
- Also capability of photon measurement in low p_T by conversion finding

Backup

Future Plan of Event Anisotropy Analysis in PHENIX

<u>್ಷಣ್ಣ ಕ್ಷೇ</u>ಗಿದ್ದ ಭಿರಿತಿ ಭಿರತೆ ಭಿರ

- Trying v_2 for all of possible particles with large statistics
 - Already tried
 - charged π , K, p, deuteron, π^0 , $e^{+(-)}$ (inclusive), gamma (inclusive)
 - On going but need much more statistics
 - eta
 - direct gamma
 - inclusive gamma [contribution from π^0 , eta (dominantly)]
 - charm and bottom meson
 - inclusive $e^{+(-)}$ [contribution from π^0 and eta dalitz decay (dominantly)]
 - Seems to be hard work, but...
 - K⁰s
 - Lambda
 - resonances
 - penta-quark
- v_1 on BBC (η =3-4)
- Correlation method for v_n
- Cross section and HBT radii in-plane and out-plane

Comparison with a model

Hydrodynamical calculation agreed in $p_{T} \sim 2$ GeV/c. After that, it is deviated.

Comparison with a model

and the stand the stand the stand

金田雅

Special thanks to C. Nonaka (one of authors) of nucl-th/0306027 for data of model calculation

Comparison with a model which is described in nucl-th/0306027. Here we don't want to discuss which model can describe the data. To conclude which model can describe the data, we need much more statistics in high p_{τ} region.

Photon Purity with cuts

DNP99, October 1999

Central HIJING Events: ToF and Shower Profile cut performance

Systematic Errors

金田雅

3