$\pi^0 v_2$ analysis in $\sqrt{s_{NN}}$ = 200GeV Au+Au collisions KANETA, Masashi for the PHENIX Collaboration RIKEN-BNI Research Center # Why Event Anisotropy? - Because of sensitive to collision geometry - At low p_T (<2 GeV/c) - Pressure gradient of early stage - Hydrodynamical picture is established - At high p_T (>2 GeV/c) - Energy loss in dense medium (Jet Quenching) - Partonic flow(?) Here we focus on ellipticity of azimuthal momentum distribution, v₂ (second Fourier coefficient) as physics message # PHENIX experiment ටමු කට මුත වල් කට විදිය වල් කට වල් කට මුත වල් කට ව - Lead Scintillator and Lead Glass EMCs - Gamma measurement $(\pi^0 \rightarrow \gamma \gamma)$ - BBCs and ZDCs - Collision centrality determination - BBCs - Reaction plane determination and - Its resolution correction # Method of $\pi^0 v_2$ Measurement - Define reaction plane by charged multiplicity on Beam-Beam Counters - π^0 reconstruction from Electro-Magnetic Calorimeter (EMC) - For each p_T , azimuthal angle, centrality - Combine both information - Counting number of π^0 as a function of $$E\frac{dN^{3}}{d^{3}p} = \frac{1}{2\mathbf{p}} \frac{d^{2}N}{p_{T} dp_{T} dy} \left(1 + \sum_{n=1}^{\infty} 2 \frac{v_{n}^{measured}}{\sqrt{1 \frac{v_$$ $$v_n^{\text{ real}} = v_n^{\text{ measured}/\text{ (reaction plane resolution)}_n$$ Note: the detail of reaction plane definition will be found in nuclex/0305013 #### Some example plots from an analysis procedure ಾಕ್ಷದಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವಾಕ್ಕಿತ್ರಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವಕ್ಕಿತ್ವಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವಾಕ್ಕಿತ್ವ #### Invariant mass of γγ from same event and mixed event # Tooooo many histograms checked Example of invariant mass distributions for each p_T , ϕ - Φ_R in a centrality bin Before combinatorial background subtraction After combinatorial background subtraction #### v₂ vs. p_T vs. Centrality from 200GeV Au+Au Statistical error is shown by error bar Systematic error from π^0 count method and reaction plane determination is shown by gray box ### v₂ vs. p_T vs. Centrality from 200GeV Au+Au Statistical error is shown by error bar Systematic error from π^0 count method and reaction plane determination is shown by gray box The charged π and K v_2 are shown only with statistical errors #### v₂ vs. p_T vs. Centrality from 200GeV Au+Au Statistical error is shown by error bar Systematic error from π^0 count method and reaction plane determination is shown by gray box The charged π and K v_2 are shown only with statistical errors • Charged $\pi + K v_2$ consistent with $\pi^0 v_2$ in $p_T < 4 GeV/c$ ### v₂ vs. p_T (Minimum Bias) from 200GeV Au+Au • Identified particle v_2 up to $p_T=10$ GeV/c #### v₂ vs. p_T (Minimum Bias) from 200GeV Au+Au • Identified particle v_2 up to $p_T=10$ GeV/c #### v₂ vs. p_⊤ (Minimum Bias) from 200GeV Au+Au • Identified particle v_2 up to $p_T=10$ GeV/c # Comparison with a model # Comparison with a model Comparison with a model which is described in nucl-th/0306027. Here we don't want to discuss which model can describe the data. To conclude which model can describe the data, we need much more statistics in high p_T region. ## Summary - First measurement of π^0 v_2 at RHIC - In p_T =1-10 GeV/c - Charged $\pi + K v_2$ consistent with $\pi^0 v_2$ - In p_T =1-4GeV/c - Minimum bias data shows finite π^0 v_2 - Up to $p_T \sim 8 \text{ GeV/c}$ - RHIC run4 Au+Au, it will be - Much more statistics - Detail study of v_2 shape around p_T =2-4GeV/c - Much higher p_T - We want to know where is end of finite v_2 in very high p_T