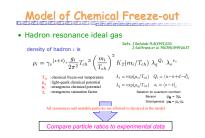
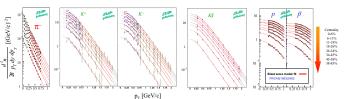
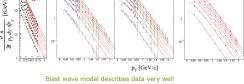
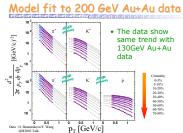

Chemical and Kinetic Freeze-out Properties at RHIC

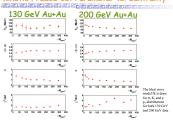


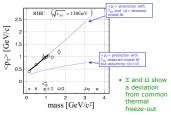
Masashi Kaneta for the STAR Collaboration, LBNL





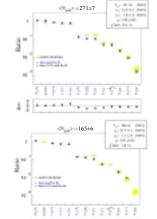


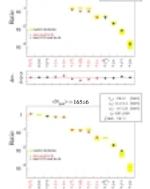

Model Fit to 130 GeV Data

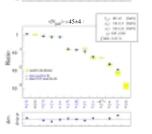

Common Chemical Freeze-out?

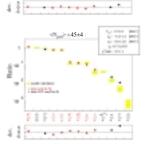

- Multi-Strange particles show earlier kinetic freeze-out
- How about Chemical Freeze-out?
- Check two combinations of ratios for fit
 with =
 without =
- · Particle ratios are obtained from recent STAR data

 – published / preprint / conference proceedings


 - some data are interpolated to adjust centrality (<Npart>) to centrality bin of Ξ


Mass Dependence of <p→ (central data)



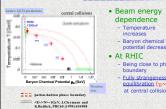


√s_{NN} (GeV)

Summary of Kinetic Freeze-out

- The p_{τ} distributions of π , K, and p are obtained as a function of centrality from RHIC-STAR at $\sqrt{s_{\tiny NN}}$ =130GeV and 200 GeV
- . The blast wave model describes the data over all of centrality
- Within the blast wave model

 - As a function of centrality at RHIC


 T_m ~ 100 MeV, goes down

 (A) goes up and saturates (~0.55c (130GeV), 0.60c (200GeV))

 Indication of change of flow profile

 Seam energy dependence

Summary of Chemical Freeze-out

freeze-out in 130GeV Au+Au Collisionts

From the chemical freeze-out model

- •Tch ~ 175 MeV
- $\bullet \mu_q$ is increasing with centrality
- •μ_s is close to zero •Close to phase boundary Refs. PLB262(1991)333. PRC37(1988)1452, RC37(1988)1452
- •γ_s is increasing with centrality
- Deviation of multi-strangeness from non-strange/single-strangeness in peripheral collisions