

Chemical

and Kinetic perties at

ೆ ನಿರ್ವಾಧಿ ಮನ್ನ ಮನೆಗಿ ಮನೆಗಿ ಮನೆಗಿ ಮನೆಗಿ ಮನೆಗಿ ಮನೆಗೆ ಮನೆಗೆ ಮನ್ನ ಮನ್ನ ಮನ್ನ ಮನೆಗೆ ಮನೆಗೆ ಮನೆಗೆ ಮನೆಗೆ ಮನೆಗೆ ಮನೆಗೆ ಮನ ಮಾಡುಗಳ ಮನೆಗೆ ಮನೆ

Freeze-out

RHIC

Masashi Kaneta

for the STAR Collaboration,

LBNL

Kinetic and Chemical Freeze-c

- Kinetic freeze-out
 - End of elastic interactions
 - Particle momenta are frozen

⇔ Transverse momentum distribution

Ref. E. Schnedermann et al., PRC48(1993)2462

- Chemical freeze-out
 - End of inelastic interactions
 - Number of each particle species is frozen
 - ⇔ Particle ratios

Refs. J.Rafelski, PLB(1991)333 J.Sollfrank et al., PRC59(1999)1637

Blast Wave Model

- Source is
 - Locally thermally equilibrated
 - Boosted

$$E\frac{d^{3}n}{dp^{3}} \propto \int_{\sigma} e^{-(u^{\nu}p_{\nu})/\underline{T_{th}}} p^{\lambda} d\sigma_{\lambda}$$
$$u^{\nu}(t,r,z=0) = (\cosh\rho, \vec{e_{r}} \sinh\rho, 0)$$
$$\rho = \tanh^{-1}\beta_{r}$$
$$\beta_{r} = \beta_{s} f(x,p) = \underline{\beta_{s}}(r/R)^{\underline{n}}$$

E. Schnedermann, J.Sollfrank, U. Heinz, PRC48(1993)2462

$$\frac{dn}{m_T dm_T} \propto \int_0^R r \, dr \, m_T K_1 \left(\frac{m_T \cosh \rho}{T_{th}}\right) I_0 \left(\frac{p_T \sinh \rho}{T_{th}}\right)$$

$$\boxed{\qquad}$$
Compare p_T spectra to experimental data

Model Fit to 130

Blast wave model describes data very well

Gev Data REARFORFORFORFORFORFORFORFO

 K_S^0

10

1

10⁻¹

0.25

0

0.5 0.75

Model Fit to 200 GeV Au+Au Data

Kinetic Freeze-out Parameter vs. Centrality

ಂಗಿ ಆರ್ ಇವತ್ರಿ ಇವತ್ರಿ ಇವತ್ತಿ ಇವತ್ತ ಇವತ್ತಿ ಇವತ್ತ

The blast wave model fit is done for π , K, and p p_T distributions for both 130 GeV and 200 GeV data

Mass Dependence of <p_> (central data)

Bombarding Energy Dependence

From SPS to RHIC Energy Increasing flow Saturating temperature

Summary of Kinetic Freeze-out

- The p_T distributions of π , K, and p are obtained as a function of centrality from RHIC-STAR at $\sqrt{s_{NN}}$ =130GeV and 200 GeV Au+Au
- The blast wave model describes the data over all of centrality
- Within the blast wave model
 - As a function of centrality at RHIC
 - $T_{th} \sim 100$ MeV, goes down
 - < β_r > goes up and saturates (~0.55c (130GeV), 0.60c (200GeV))
 - Indication of change of flow profile
 - Beam energy dependence
 - Increasing flow
 - Saturating temperature

Model of Chemical Freeze-out

• Hadron resonance ideal gas

density of hadron *i* is

Refs. J.Rafelski PLB(1991)333 J.Sollfrank et al. PRC59(1999)1637

$$\rho_i = \gamma_s \langle s+\bar{s} \rangle_i \frac{g_i}{2\pi^2} T_{ch}^3 \left(\frac{m_i}{T_{ch}}\right)^2 K_2(m_i/T_{ch}) \lambda_q^{Q_i} \lambda_s^{s_i}$$

T_{ch} : chemical freeze-out temperature

- μ_{q} : light-quark chemical potential
- μ_{s} : strangeness chemical potential
- γ_s : strangeness saturation factor

 $\lambda_s = \exp(\mu_s/T_{ch}) \quad Q_i = \langle u - \bar{u} + d - \bar{d} \rangle_i$

$$\lambda_q = \exp(\mu_q/T_{ch}) \quad s_i = \langle s - \bar{s} \rangle_i$$

Relation to quantum number:

Baryon $\mu_{\mathbf{B}} = 3\mu_{q}$ Strangeness $\mu_{\mathbf{S}} = \mu_{q} - \mu_{s}$

All resonances and unstable particles are allowed to decayed in the model

Compare particle ratios to experimental data

Common Chemical Freeze-out?

- Multi-Strange particles show earlier kinetic freeze-out
- How about Chemical Freeze-out?
 - Check two combinations of ratios for fit
 - with Ξ
 - without Ξ
- Particle ratios are obtained from recent STAR data
 - published / preprint / conference proceedings
 - some data are interpolated to adjust centrality (<N_{part}>) to centrality bin of Ξ

Centrality Dependence of Chemical Freeze-out in 130 GeV Au+Au Collisions From the chemical freeze-out model From the chemical freeze-out model Collisions From the chemical	 Ys IS Increasing with centrality Fully strangeness equilibration in central collisions Deviation of multi-strangeness from non-strange/single-strangeness in peripheral collisions
---	--

