Thoughts & questions on primordial k₊

Mark D. Baker

July 5, 2012

Motivation

- DIS & especially DY & other pp data imply that "intrinsic" k_⊤ grows with s and/or Q²
 - Pythia 6.4 default RMS k_⊤ is 2 GeV!
 - Often attributed to improperly modeled QCD effects: parton shower details or higher order hard QCD
- In DIS, unlike in pp, we can distinguish between intrinsic non-perturbative k_T and p_T due to QCD radiation. Let's measure it!
- Intrinsic k_T would be clearly also be valuable to compare in ep and eA to look at saturation effects.

Running of "k_⊤"

ZEUS Collaboration / Physics Letters B 511 (2001) 19-32

Note: Gaussian: $\langle k_T \rangle = \operatorname{sqrt}(\pi/4) * k_T^{rms}$

ZEUS ignores the target remnant

ZEUS Collaboration / Physics Letters B 511 (2001) 19-32

Common problem with: DIS γ +jet OR pp->dijet OR Drell-Yan:

Very <u>subtle</u> differences between intrinsic k_T and gluon radiation

We need something that smacks you in the face a bit more...

Collision in hadronic cm p $-k_{T}$ Intrinsic k_T of parton compensated by target remnant (TR) Event effectively rotated w.r.t. no k_{τ} case. $p_{\tau} \sim |x_{\tau}| k_{\tau}$

Primordial k_T shows up at high |x_F|

LEPTO 6.5.1 $s=(30 \text{ GeV})^2$ stable charged particles

Contribution from primordial k_T to p_T is roughly $\propto |x_F|$

Primordial k_T shows up at high |x_F|

LEPTO 6.5.1 s=(30 GeV)² stable charged particles

Contribution from primordial k_T to p_T is roughly $\propto |x_F|$

QCD effects in hadronic cm

Hard QCD (and FS Parton Shower) increases p_T at forward x_F

What about Init. State Parton Shower?

Perhaps surprisingly, extra p_T also tends to be <u>forward</u>

Parton Showers mostly contribute at forward x_F

LEPTO 6.5.1 s=(30 GeV)² Stable charged particles

QCD, in general, shows up at forward x_F

Basic physics: only the struck, accelerated, parton radiates

QCD shows up at forward x_F

Basic physics: only the struck, accelerated, parton radiates

Primordial k_T cleanest at $x_F < -0.2$

LEPTO 6.5.1 s=(30 GeV)² stable charged particles

Also shows up at $x_F>0.2$, especially for larger values of k_T

EMC singles data

EMC Collaboration, ZPC 36 (1987) 527

A: Standard LEPTO w/ $k_T^{RMS} = 0.44$ GeV (hard & soft QCD on)

B: Hard gluons off, soft still on

C: Soft gluons off, hard still on

D: Like case C, but w/ $k_T^{RMS} = 0.88 \text{ GeV}$

0.88 GeV of kT looks VERY different than 0.44 GeV + soft QCD

Conclusion (singles)

- Intrinsic k_⊤ of struck parton:
 - Is reflected in the target remnant as well as struck parton (both forward and negative x_F)
 - Impacts hadron p_T like |x_F| k_T
- Dynamical p_T from soft or hard QCD shows up primarily forward (γ^* direction in hadronic cm)
- Therefore intrinsic k_{T} cleanest at $x_{F} < -0.2$
- Huge difference in seagull plot for rms k_T of 0.44 GeV vs. 1.0 GeV

Next step: correlations

- Forward p_T is a mix of k_T and QCD
- For eA, intranuclear cascading (INC) will ALSO contribute at large negative x_F.
 - Simulate impact of this, of course...
- But we have MORE information.
 - Intrinsic k_T shows up forward and backward and equal and opposite
 - INC should primarily affect x_F<-0.2 and not x_F>0.2
 - QCD is forward, not backward.

- Trigger particle:
 - Leading (largest x_F) particle with x_F>0.3
 - Anti-leading (largest $-x_F$) particle with $x_F < -0.3$.
- Define the p_T direction of this leading particle as p_x . Plot the integral of p_x of all other particles as a function of x_F (or y^*).

RMS $k_{T}=0.44$ GeV

RMS $k_{\tau}=1.0$ GeV

Note: These should be normalized by $1/N_{ev}$ and bin size Δx_{F}

RMS $k_{T}=0.44$ GeV

RMS $k_{T}=2.0$ GeV

Note: These should be normalized by $1/N_{ev}$ and bin size Δx_{F}

Triggered by target anti-leading particle

RMS k_{τ} =0.44 GeV

RMS k_{τ} =1.0 GeV

Intrinsic k_T already dominant

Note: These should be normalized by $1/N_{ev}$ and bin size Δx_F

RMS $k_{\tau}=0.44$ GeV

RMS k_{τ} =2.0 GeV

Intrinsic k_T dominant

Note: These should be normalized by $1/N_{ev}$ and bin size Δx_{F}

RMS $k_{T}=1.0$ GeV

RMS k_{τ} =1.0 GeV

Note: These should be normalized by $1/N_{ev}$ and bin size Δx_{F}

Intrinsic k_⊤ already dominant

For $k_T=1.0$ GeV, we can see that the forward trigger p_T is still a mix of k_T and QCD, While for the backward trigger, the p_T is dominated by k_T .

Reminder: variables

- Hadronic (γ^* p) cm with + z along γ^* direction.
 - Feynman x: $x_F = 2 p_z / W$
 - Cm rapidity: $y^* = 0.5 \ln [(E+p_z)/(E-p_z)]$
- For reasons I don't fully understand, y* seems more incisive with relatively clear "peaks" for the QCD and k_T compensation— and was used by EMC:
 - Triggered on x_F and plotted vs. y*...

RMS $k_{T}=0.44$ GeV

RMS k_{τ} =1.0 GeV

Note: These should be normalized by $1/N_{ev}$ and bin size Δy^*

Very forward particles reflect positive k_T

RMS $k_{T}=0.44$ GeV

RMS k_{τ} =2.0 GeV

Note: These should be normalized by $1/N_{\rm ev}$ and bin size Δy

Note: These should be normalized by $1/N_{ev}$ and bin size Δy^*

Intrinsic k_⊤ already dominant

Note: These should be normalized by $1/N_{ev}$ and bin size Δy^*

Intrinsic k_T dominant

EMC p_T balance plots

EMC Collaboration, ZPC 36 (1987) 527

A: Standard LEPTO w/ $k_T^{RMS} = 0.44 \text{ GeV}$

C: Soft gluons off

D: Soft gluons off, but w/ $k_T^{RMS} = 0.88 \text{ GeV}$

0.88 GeV of kT looks VERY different than 0.44 GeV + soft QCD This & the earlier EMC seagull plots were how LEPTO (even 6.5.1) was tuned

Gluon k_T

Gluon and sea quark kT must be highly correlated, but lets look at what might happen if we tag photon-gluon fusion events:

Backward hemisphere very sensitive to kT and doesn't care about subprocess. If gluon and quark kT are different, this is a clear way to see it!

Note: My LEPTO-PHI version has the ability to make gluon kT different than quark kT

Conclusion

- Effect of large intrinsic k_T (1-2 GeV) looks very different from hard or soft QCD effects in DIS:
 - Seagull plots and general p_T at high |x_F|
 - Especially x_F<-0.2
 - Forward-backward p_¬-balance correlations
- For gluon k_T the backward hemisphere is even more critical to use since the forward hemisphere is contaminated with QCD.