Thoughts & questions on primordial k₊ Mark D. Baker July 5, 2012 #### Motivation - DIS & especially DY & other pp data imply that "intrinsic" k_⊤ grows with s and/or Q² - Pythia 6.4 default RMS k_⊤ is 2 GeV! - Often attributed to improperly modeled QCD effects: parton shower details or higher order hard QCD - In DIS, unlike in pp, we can distinguish between intrinsic non-perturbative k_T and p_T due to QCD radiation. Let's measure it! - Intrinsic k_T would be clearly also be valuable to compare in ep and eA to look at saturation effects. ## Running of "k_⊤" ZEUS Collaboration / Physics Letters B 511 (2001) 19-32 Note: Gaussian: $\langle k_T \rangle = \operatorname{sqrt}(\pi/4) * k_T^{rms}$ ## ZEUS ignores the target remnant ZEUS Collaboration / Physics Letters B 511 (2001) 19-32 Common problem with: DIS γ +jet OR pp->dijet OR Drell-Yan: Very <u>subtle</u> differences between intrinsic k_T and gluon radiation We need something that smacks you in the face a bit more... # Collision in hadronic cm p $-k_{T}$ Intrinsic k_T of parton compensated by target remnant (TR) Event effectively rotated w.r.t. no k_{τ} case. $p_{\tau} \sim |x_{\tau}| k_{\tau}$ ## Primordial k_T shows up at high |x_F| LEPTO 6.5.1 $s=(30 \text{ GeV})^2$ stable charged particles Contribution from primordial k_T to p_T is roughly $\propto |x_F|$ ## Primordial k_T shows up at high |x_F| LEPTO 6.5.1 s=(30 GeV)² stable charged particles Contribution from primordial k_T to p_T is roughly $\propto |x_F|$ #### QCD effects in hadronic cm Hard QCD (and FS Parton Shower) increases p_T at forward x_F #### What about Init. State Parton Shower? Perhaps surprisingly, extra p_T also tends to be <u>forward</u> ## Parton Showers mostly contribute at forward x_F LEPTO 6.5.1 s=(30 GeV)² Stable charged particles ## QCD, in general, shows up at forward x_F Basic physics: only the struck, accelerated, parton radiates ## QCD shows up at forward x_F Basic physics: only the struck, accelerated, parton radiates ## Primordial k_T cleanest at $x_F < -0.2$ LEPTO 6.5.1 s=(30 GeV)² stable charged particles Also shows up at $x_F>0.2$, especially for larger values of k_T ### EMC singles data EMC Collaboration, ZPC 36 (1987) 527 A: Standard LEPTO w/ $k_T^{RMS} = 0.44$ GeV (hard & soft QCD on) B: Hard gluons off, soft still on C: Soft gluons off, hard still on D: Like case C, but w/ $k_T^{RMS} = 0.88 \text{ GeV}$ 0.88 GeV of kT looks VERY different than 0.44 GeV + soft QCD ## Conclusion (singles) - Intrinsic k_⊤ of struck parton: - Is reflected in the target remnant as well as struck parton (both forward and negative x_F) - Impacts hadron p_T like |x_F| k_T - Dynamical p_T from soft or hard QCD shows up primarily forward (γ^* direction in hadronic cm) - Therefore intrinsic k_{T} cleanest at $x_{F} < -0.2$ - Huge difference in seagull plot for rms k_T of 0.44 GeV vs. 1.0 GeV ### Next step: correlations - Forward p_T is a mix of k_T and QCD - For eA, intranuclear cascading (INC) will ALSO contribute at large negative x_F. - Simulate impact of this, of course... - But we have MORE information. - Intrinsic k_T shows up forward and backward and equal and opposite - INC should primarily affect x_F<-0.2 and not x_F>0.2 - QCD is forward, not backward. - Trigger particle: - Leading (largest x_F) particle with x_F>0.3 - Anti-leading (largest $-x_F$) particle with $x_F < -0.3$. - Define the p_T direction of this leading particle as p_x . Plot the integral of p_x of all other particles as a function of x_F (or y^*). RMS $k_{T}=0.44$ GeV RMS $k_{\tau}=1.0$ GeV Note: These should be normalized by $1/N_{ev}$ and bin size Δx_{F} RMS $k_{T}=0.44$ GeV RMS $k_{T}=2.0$ GeV Note: These should be normalized by $1/N_{ev}$ and bin size Δx_{F} Triggered by target anti-leading particle RMS k_{τ} =0.44 GeV RMS k_{τ} =1.0 GeV Intrinsic k_T already dominant Note: These should be normalized by $1/N_{ev}$ and bin size Δx_F RMS $k_{\tau}=0.44$ GeV RMS k_{τ} =2.0 GeV Intrinsic k_T dominant Note: These should be normalized by $1/N_{ev}$ and bin size Δx_{F} RMS $k_{T}=1.0$ GeV RMS k_{τ} =1.0 GeV Note: These should be normalized by $1/N_{ev}$ and bin size Δx_{F} Intrinsic k_⊤ already dominant For $k_T=1.0$ GeV, we can see that the forward trigger p_T is still a mix of k_T and QCD, While for the backward trigger, the p_T is dominated by k_T . #### Reminder: variables - Hadronic (γ^* p) cm with + z along γ^* direction. - Feynman x: $x_F = 2 p_z / W$ - Cm rapidity: $y^* = 0.5 \ln [(E+p_z)/(E-p_z)]$ - For reasons I don't fully understand, y* seems more incisive with relatively clear "peaks" for the QCD and k_T compensation— and was used by EMC: - Triggered on x_F and plotted vs. y*... RMS $k_{T}=0.44$ GeV RMS k_{τ} =1.0 GeV Note: These should be normalized by $1/N_{ev}$ and bin size Δy^* Very forward particles reflect positive k_T RMS $k_{T}=0.44$ GeV RMS k_{τ} =2.0 GeV Note: These should be normalized by $1/N_{\rm ev}$ and bin size Δy Note: These should be normalized by $1/N_{ev}$ and bin size Δy^* Intrinsic k_⊤ already dominant Note: These should be normalized by $1/N_{ev}$ and bin size Δy^* Intrinsic k_T dominant ## EMC p_T balance plots EMC Collaboration, ZPC 36 (1987) 527 A: Standard LEPTO w/ $k_T^{RMS} = 0.44 \text{ GeV}$ C: Soft gluons off D: Soft gluons off, but w/ $k_T^{RMS} = 0.88 \text{ GeV}$ 0.88 GeV of kT looks VERY different than 0.44 GeV + soft QCD This & the earlier EMC seagull plots were how LEPTO (even 6.5.1) was tuned ## Gluon k_T Gluon and sea quark kT must be highly correlated, but lets look at what might happen if we tag photon-gluon fusion events: Backward hemisphere very sensitive to kT and doesn't care about subprocess. If gluon and quark kT are different, this is a clear way to see it! Note: My LEPTO-PHI version has the ability to make gluon kT different than quark kT #### Conclusion - Effect of large intrinsic k_T (1-2 GeV) looks very different from hard or soft QCD effects in DIS: - Seagull plots and general p_T at high |x_F| - Especially x_F<-0.2 - Forward-backward p_¬-balance correlations - For gluon k_T the backward hemisphere is even more critical to use since the forward hemisphere is contaminated with QCD.