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Bose-Einstein correlations of charged kaons are used to probe Auþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV

and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-

dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source

function. The centrality dependences of the three Gaussian radii are well described by a single linear

function of N1=3
part with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r *

10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-

Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is
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extended, and that similar measurements with pions are not solely due to the decay of long-lived

resonances.

DOI: 10.1103/PhysRevLett.103.142301 PACS numbers: 25.75.Dw, 25.75.Gz

Experiments at the Relativistic Heavy-Ion Collider
(RHIC) at Brookhaven National Laboratory have revealed
that collisions of Au ions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV produce a

new form of matter which is opaque to jets and exhibits
anisotropic flow consistent with perfect fluid hydrodynam-
ics [1,2]. Studies of the space-time evolution of the colli-
sions are needed to elucidate the properties of the hot,
dense, and strongly interacting matter, probe the time scale
and degree of thermalization, and investigate the order of
the deconfinement phase transition.

Two-particle interferometry, also known as HBT after
the radio astronomers Hanbury Brown and Twiss [3], is a
powerful tool for measuring the space-time extent of
particle-emitting sources. In elementary particle and nu-
clear physics, enhanced production of like-sign pions with
small relative momenta was discovered experimentally and
explained by the Bose-Einstein symmetrization of identi-
cal bosons [4]. Correlations are produced by the combina-
tion of quantum mechanical interference of identical
particles and strong and/or electromagnetic final state in-
teractions such as Coulomb repulsion for same-sign
charged pairs. HBT radii refer to Gaussian measures of
source sizes on the femtometer scale.

Although the traditional HBT analyses are constrained
by the assumption of a Gaussian distribution of particle
emission, recent detailed measurements of pion emission
sources using an imaging technique show a non-Gaussian
structure for the two-particle source region above �20 fm
[5], suggesting the possibility that decays of long-lived
resonances or a temporal component of the source contrib-
ute to the non-Gaussian tail [6]. While charged pions are
strongly affected by rescattering among hadrons and de-
cays of hadronic resonances, charged kaons have smaller
rescattering cross sections than charged pions (�K�N <
���N) and are less affected by resonance decays. Most
hydrodynamic models predicted prolonged particle emis-
sion durations and correspondingly enlarged HBT radii as
a signal of an equilibrium first order phase transition from
QGP to hadrons at RHIC energies. However, all of the pion
HBT radii measured at RHIC show only slight increases
from lower-energy measurements that are far below the
theoretical predictions [7]. Because kaons are much less
affected by resonance decays than pions, the kaon mea-
surements described herein add an important new con-
straint to address this ‘‘HBT puzzle’’ [8,9].

An angle-averaged one-dimensional Gaussian measure-
ment of correlations of neutral kaons by STAR [10] sug-
gests that the transverse-mass-dependent HBT radii for
neutral kaons and charged pions fall on the same universal

curve. In this Letter, 3D Gaussian HBT correlations of like-
sign kaons are presented in three transverse momentum
bins for 0:3< pT < 1:5 GeV=c and three collision central-
ity bins. The resulting HBT radius parameters for kaons are
compared to those of like-sign pion pairs [11]. In addition
we present 1D emission source functions for charged kaons
in relativistic heavy-ion collisions.
This analysis of 2004 data from the PHENIX detector

[12] uses �6� 108 minimum bias events, which are trig-
gered by the coincidence of the beam-beam counters
(BBC) and zero-degree calorimeters (ZDC) with collision
vertex jzj< 30 cm. A Monte Carlo Glauber model [13] is
used to match the observed BBC and ZDC distributions
and to bin the data according to the number of nucleons
participating in the collisions, Npart.

Charged kaons are tracked and identified using the drift
chamber (DC), pad chambers (PC1,PC3), and PbSc elec-
tromagnetic calorimeters (EMCal) to cover pseudorapidity
j�j< 0:35 and azimuthal angle �� ¼ �=2 (�� ¼ �=4)
in one (and the other) central arm. A track model provides
a three-dimensional trajectory and momentum vector for
charged particles based on DC and PC1 information with a
momentum resolution of �p=p ’ 0:7% � 1:0%�
pðGeV=cÞ. Backgrounds are reduced by requiring 2� po-
sition match between track projections and EMCal hits,
and 3� match for PC3. Kaons are separated from pions up
to pT � 0:9 GeV=c using timing information from BBC
and EMCal. Particles at higher pT that fall within 2� of the
ideal mass squared for kaons but� 3� away from the peak
for pions or (anti-)protons are identified as kaons. The
contamination level is �4% from pions, and �1% from
protons at pT � 1:5 GeV=c.
The correlation function is experimentally measured as

C2ðqÞ ¼ AðqÞ=BðqÞ where AðqÞ is the relative momentum
(q) distribution of actual pairs obtained by all possible
combinations of pairs within the same events and BðqÞ is
the background pair distribution from mixed events. Two-
track detection inefficiencies for charged kaons that tra-
verse the DC and EMCal in close proximity have been
carefully studied with Monte Carlo detector simulation and
the actual pair distribution is corrected by the MC effi-
ciency factors. After pair selection cuts to remove track
splitting and merging (see [11] for details), �1:5� 107

positive kaon pairs, and �1:4� 107 negative kaon pairs
remain.
To measure multidimension source sizes, q is decom-

posed into standard ‘‘side-out-long’’ axes [14]: for which
qlong is parallel to the beam axis, qout is parallel to the

transverse momentum of the pair [kT ¼ ðp1T þ p2TÞ=2],
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and qside is orthogonal to both qlong and qout. This analysis

is performed in the longitudinally comoving system de-
fined as p1Z ¼ �p2Z. For the treatment of charged kaons
emitted away from the central region (core), we adopt an
effective core-halo Coulomb correction, proposed by
Bowler and Sinyukov [15], in which the 3D Gaussian fit
function is given by

C2 ¼ Ccore
2 þ Chalo

2 ¼ ½�ð1þGÞ�FC þ ½1� ��; (1)

where the Coulomb correlation function FC is iteratively
evaluated from the Coulomb wave function of kaon pairs
assuming a spherical Gaussian source. The Gaussian cor-
relation function in the side-out-long decomposition is
determined by

G ¼ expð�R2
sideq

2
side � R2

outq
2
out � R2

longq
2
longÞ: (2)

The systematic error estimate incorporates a contribu-
tion from the Coulomb interaction of the source halo using
a prescription developed by Maj and Mrowczynski [16].
The fitted Rside and Rlong are Gaussian measures of the

spatial lengths of homogeneity, where particles of similar
momenta are emitted [17], in the transverse and longitudi-
nal directions at freeze-out. Rout contains a contribution
from the duration of the particle emission in addition to the
spatial length [7]. Note that an outlong cross-term vanishes
in the expression for G for our j�j< 0:35 acceptance at
midrapidity [18]. The fitted � is empirically defined and
includes contributions from misidentified particles ð1�
fÞ2 along with components of the source that are not
well resolved by the Gaussian fit.

Figure 1 shows the 3D correlation function of charged
kaons without the Coulomb correction measured for 0:3<
kT < 1:5 GeV=c at 0%–30% centrality in Auþ Au colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and the fit with Eq. (1). Separate

fits to the 2Kþ and 2K� correlation functions were per-
formed, yielding consistent results for all kT and centrality
bins.

Panels (a)–(e) in Fig. 2 show the HBT radius parameters
of charged kaons for 0:3< kT < 1:5 GeV=c as functions

of N1=3
part, which is proportional to the transverse radius of

the initial collision volume. Similar to pions, kaon radii are

well described by linear functions of N1=3
part. Because initial

fits yielded slopes that were consistent for all radii and
intercepts that were consistent with zero, all three radii
were fit to a single linear function with zero intercept:

RALL ¼ p1N
1=3
part, with p1 ¼ 0:51� 0:01 and �2=ndf ¼

14:6=8. Although pions and kaons are measured in a
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similar kT range (0:2< kT < 2:0 GeV=c for pions), the

higher transverse mass (mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2T þm2

q
) for kaons

(hmTi � 0:89 GeV=c2) than for pions (hmTi �
0:47 GeV=c2) leads to smaller radii, as expected from
hmTi scaling [17,19–21].

Panels (f)–(j) in Fig. 2 show the mT dependence of the
radius parameters for kaons in 3 different mT bins at
0%–30% centrality, compared with pions [11]. HBT radii
are quite consistent at the same mT , clearly indicating that
the radii follow mT scaling. The Rout=Rside ratio for kaons
is �1:0–1:2 which is consistent with the value for pions at
low mT . Kaon HBT results from a 2Dþ 1 hybrid,
hydrodynamicþ UrQMD calculation (open circles) [22]
show slightly larger sidewards radii than the data, and the
outwards and longitudinal components are too large by a
factor of 2–3. A more recent 1Dþ 1 hybrid calculation
[23] for kaons (open squares), which assumes flat rapidity
distribution and axial symmetry, compares more favorably,
matching all radii to within systematic and statical errors.
This calculation incorporates preequilibrium flow and a
lattice-inspired equation of state, which are two features
lacking in earlier calculations of HBT radii. Although
promising, these theoretical results remain to be verified
with full 3Dþ 1 calculations that can also reproduce the
elliptic flow.

We obtain a 1D HBT radius parameter of R ¼ 3:59�
0:07ðstatÞ � 0:18ðsystÞ fm for charged kaons with hmTi ¼
1:03 GeV=c2, which is consistent with earlier STAR mea-
surements for neutral kaons [10]. The resulting value for
� ¼ 0:42� 0:03� 0:08 is lower than the neutral kaon
value, but within 2 standard deviations.

Recent femtoscopic measurements [5,6], which use an
imaging technique [24] revealed that the emission source
function of charged pions has a non-Gaussian tail which
cannot be resolved with traditional Gaussian fitting tech-
niques. The correlation function is expressed by the
Koonin-Pratt equation [25,26]

C2ðqÞ � 1 ¼
Z

drKðq; rÞSðrÞ; (3)

where the kernel Kðq; rÞ is the relative wave function as

j�ð�Þ
q ðrÞj2 � 1 that describes the propagation of pairs emit-

ted with relative separation r and relative momentum q in
the pair center-of-mass system (PCMS). SðrÞ is the emis-
sion source function of pairs.

The filled squares in Fig. 3(a) show the 1D kaon corre-
lation as a function of the invariant relative momentum of

the pair [qinv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðp1 � p2Þ2

p
=2]. The 1D source function

SðrÞ imaged from C2ðqinvÞ is shown by filled circles in
Fig. 3(b).

In this analysis, input parameters that govern the imag-
ing procedure [24] were selected to minimize the �2

between the data and the restored C2ðqinvÞð�2=ndf � 1),
shown by open circles in Fig. 3(a). The solid curve shows

the traditional Gaussian source function, obtained by
angle-averaging the 3D HBT radius parameters (�, Rside,
Rout, Rlong) in the PCMS frame, the same frame in which

the imaging is performed.
The imaged SðrÞ exhibits a non-Gaussian tail at r *

10 fm. This excess corresponds to the deficit in the qinv &
20 MeV=c region of the angle-averaged Gaussian curve of
Fig. 3(a), and is also visible in the 3D Gaussian slices in
Fig. 1. The SðrÞ for pions in the same kT range shows a
similar trend. The systematic error on the tail due to the
kaon identification cut is �3%. The deviation from a
Gaussian in the shape of the SðrÞ indicates that the particle
emission region is extended, and a similar non-Gaussian
tail in the pion source is not solely the result of long-lived
resonance decays such as the !, although a less prominent
contribution from the K� is likely. The observation of a
more substantial non-Gaussian tail for kaons than for pions
is qualitatively consistent with a hadronic resonance cas-
cade model with a time dependent density for an expanding
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FIG. 3 (color online). (a) (filled squares) measured C2ðqinvÞ.
(open circles) restored C2ðqinvÞ from imaged SðrÞ, compared
with (solid curve) angle-averaged Gaussian C2ðqinvÞ for charged
kaon pairs. (b) (filled circle) Imaged kaon SðrÞ compared with
(solid curve) angle-averaged Gaussian SðrÞ. Error bars are sta-
tistical only and boxes indicate the total systematic errors. (open
triangle) SðrÞ for charged pion pairs for the same kT region. For
the pion SðrÞ, error bars include both statistical and systematic
errors.
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source, in which the larger mean free path for kaons leads
to an extended emission region [27,28]. Detailed measure-
ments with 3D HBT imaging of kaons, or 1D imaging of
more species probing different hadronic cross sections will
determine contributions from other kinetic effects to SðrÞ.

In summary, we have measured Bose-Einstein correla-
tion functions of charged kaon pairs in Auþ Au collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The 3D HBT radii Rside, Rout, and

Rlong are consistent for pions and kaons at the same Npart

and mT . The 1D emission source function for kaons ex-
tracted by imaging shows a non-Gaussian tail at distances
greater than 10 fm. This tail represents a direct measure-
ment of the 1D length of homogeneity of the particle
emission source and is not due primarily to resonance
decays.
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[27] T. Csörgő, S. Hegyi, T. Novák, and W.A. Zajc, AIP Conf.

Proc. 828, 525 (2006).
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