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QCD Lagrangian

Yang-Mills Gauge Principle: 
Invariance under Color 

Rotation and Phase Change 
at Every Point of Space and 

Time 

Dimensionless Coupling
Renormalizable 

Asymptotic Freedom
Color Confinement
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Truth is stranger than fiction, but it is 
because Fiction is obliged to stick to 
possibilities.        —Mark Twain

• Although we know the QCD Lagrangian, we 
have only begun to understand its remarkable 
properties and features.

• Novel QCD Phenomena: hidden color, color 
transparency, strangeness asymmetry, intrinsic 
charm, anomalous heavy quark phenomena,  
anomalous spin effects, single-spin 
asymmetries, odderon, diffractive deep 
inelastic scattering, dangling gluons, 
shadowing, antishadowing, QGP, CGC, ...
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• Use AdS/CFT to provide an 
approximate, covariant, and 
analytic model of hadron structure 
with confinement at large 
distances, conformal behavior at 
short distances

• Analogous to the Schrodinger 
Theory for Atomic Physics

• AdS/QCD Holographic Model

Goal:
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Applications of AdS/CFT  to QCD 

in collaboration with Guy de Teramond

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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Dirac’s Amazing  Idea: 
The Front Form

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

6

Evolve in 
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
μ 

7

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3
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‘Tis a mistake / Time flies not
It only hovers on the wing

Once born the moment dies not
‘tis an immortal thing

...A moment standing still for ever.

James Montgomery 1833
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3 Light-Front Dynamics and Mapping AdS Modes

Light-Front Wave Functions in QCD

• Hadronic bound state expanded in n-particle Fock eigenstates |ψh〉 =
∑

n ψn/h|ψh〉 of the LF

Hamiltonian HLF = P 2 = P+P−− P2
⊥, HLF |P 〉 = M2|P 〉, at fixed LF time τ = t + z/c

(Dirac ’49; Pauli and Pinsky, sjb Phys. Rept. 1988).

• Fock components

ψn/h(xi,k⊥i) =
〈
n; xi,k⊥i,

∣∣ψh(P+,P⊥)
〉
,

frame independent and encode hadron properties in high momentum-transfer collisions.

• Momentum fraction xi = k+
i /P+ and k⊥i are the relative coordinates of parton i in Fock-state n

n∑

i=1

xi = 1
n∑

i=1

k⊥i = 0.

• Define transverse position coordinates xir⊥i = xiR⊥ + b⊥i

n∑

i=1

b⊥i = 0,
n∑

i=1

xir⊥i = R⊥.
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2

⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Matrix 
Formulation

Light-Front QCD

Hans Christian Pauli  & sjb

DLCQ
Discretized Light-Cone 

Quantization

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 

16 
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16 

LIGHT-FRONT SCHRODINGER EQUATION

G. P. Lepage, sjbA+ = 0

Υ→ ggg → d̄X

Υ→ ggg → p̄n̄X

R = Γ(Υ→d̄X)
Γ(Υ→p̄n̄X)

R = C

ū(x) "= d̄(x)

s̄(x) "= s(x)

11
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock state by Fock State

S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

n-1 orbital angular momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum
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General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

LFWFs

B-Decays

GPDs

Distribution 
Amplitudes

13



 
 Stan Brodsky,  SLACAdS/QCDBNL

November 20, 2007

Calculation of Form Factors in  Equal-Time Theory
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Calculation of Form Factors in TOPTH
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Calculation of Form Factors in  Light-Front Theory
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Calculation of Form Factors in TOPTH

zero for q+ = 0 zero !!

Need vacuum fluctuations
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑

a

∫
[dx][d2k⊥]

∑

j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑

a

∫
[dx][d2k⊥]

∑

j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑

a

∫
[dx][d2k⊥]

∑

j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)−
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

∫
[dx] [d2k⊥] ≡

∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]

16π3δ

(

1−
n∑

i=1

xi

)

δ(2)

(
n∑

i=1

k⊥i

)

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjbA(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆%z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥
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-

graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

16

Hwang, Schmidt, sjb; 
Holstein et al

Okun, Kobzarev, Teryaev:  B(0) Must vanish because of 
Equivalence Theorem 

16
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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+ 1〉 configuration which is the non-
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to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the
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electron

Configuration Fermion spin sz
f

Boson spin sz
b
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〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1
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〉
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+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
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− 1
〉

+ 1
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−1 +1

n-1 orbital angular momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum

17



 
 Stan Brodsky,  SLACAdS/QCDBNL

November 20, 2007

|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time

18

Intrinsic heavy quarks    
s̄(x) != s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p " 30%

Violation of Gottfried sum rule

ū(x) #= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

Mueller: BFKL DYNAMICS    

18



                       

19

Light Antiquark Flavor Asymmetry
• Naïve Assumption 

from gluon splitting:

 E866/NuSea (Drell-Yan)

19
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|uudcc̄> Fluctuation in Proton
QCD: Probability ∼Λ

2
QCD

M2
Q

|e+e−!+!− > Fluctuation in Positronium
QED: Probability ∼(meα)4

M4
!

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm!

OPE derivation - M.Polyakov et al.

Hoyer, Peterson, Sakai, sjb

20

< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2

⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2

τ = t + z/c

< p|G
3
µν

m2
Q

|p > vs. < p|F
4
µν

m4
#

|p >

+κ4ζ2

dσ
dxF

(pp → HX)[fb]

fb

πq → γ∗q

20
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Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE

• Color - Octet + Color - Octet Fock State! 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production 
(Kopeliovich, Schmidt, Soffer, sjb)

• Severely underestimated in conventional parameterizations of 
heavy quark distributions (Pumplin, Tung)

• Many empirical tests  

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

PQQ̄QQ̄ ∼ α2
sPQQ̄

Pcc̄/p # 1%

Q

Q̄

b⊥ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb

21



 
 Stan Brodsky,  SLACAdS/QCDBNL

November 20, 2007

c

Hoyer, Peterson, SJB

Measure c(x) in Deep Inelastic 
Lepton-Proton Scattering

22
22
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for 
Intrinsic Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon-Gluon Fusion: factor of 30 too sma#

23

factor of 30 !

23
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• EMC data: c(x, Q2) > 30×DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp→ J/ψX

• High xF pp→ J/ψJ/ψX

• High xF pp→ ΛcX

• High xF pp→ ΛbX

• High xF pp→ Ξ(ccd)X (SELEX)

24
24
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Annihilation amplitude needed for Lorentz Invariance

Exact Formula! 
Hwang, SJB

Non-perturbative complication from IC Fock states!
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 

27

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

27
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ψ(σ, b⊥)

σ = y−P+

2

|b⊥|

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

ψ(σ, b⊥)

σ = y−P+

2

|b⊥|(GeV−1)

pp→ pp

e+e− → pp̄

ep→ ep

R(e+e− → HH̄) ∝ |F (s)|2

AdS/CFT  Holographic Model

3-dimensional photograph:
meson LFWF at fixed LF Time

G. de Teramond
SJB 

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z
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Prediction from AdS/CFT: Meson LFWF
ψ(x, k⊥)

ψ(x, k⊥)

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

(GeV)
de Teramond, sjb

30

φM(x, Q0) ∝
√

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

30



 

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

1
s−M2+iMΓ

q2 → q2 + iε→ q2 + iMΓ

Fix Γ from height

Γρ = 111 MeV

Conformal Theories are invariant under the 
Poincare and conformal transformations with  

the generators of SO(4,2)

SO(4,2)  has a mathematical representation on AdS5
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(ηµνdxµdxν − dz2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 → λ2x2, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 1132

invariant measure
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We will consider both holographic models 

1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the β

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(ηµνdxµdxν − dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z → 0 corresponds to the Q→∞, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/ΛQCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ϕ(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

37
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• QCD is not conformal;  however, it has 
manifestations of a scale-invariant theory: 
Bjorken scaling, dimensional counting for hard 
exclusive processes

• Conformal window:

• Use mathematical mapping of the conformal 
group  SO(4,2) to AdS5 space

Map AdS5 X S5 to conformal N=4 SUSY

38

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Maldacena:

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory
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Conformal QCD Window in Exclusive Processes

• Does αs develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada,

Deur . . .

• Recent lattice simulations: evidence that αs becomes constant and is not small in the infrared

Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).

• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Farrar and sjb (1973); Matveev et al. (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

Conformal QCD Window in Exclusive Processes

• Does αs develop an IR fixed point? D-S Equation Alkofer, Fischer, LLanes-Estrada, Deur . . .

• Recent lattice simulations: evidence that αs becomes constant and not small in the infrared

Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE)
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• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Brodsky and Farrar (1973); Matveev et al. (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

Exploring QCD, Cambridge, August 20-24, 2007 Page 11
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IR Fixed-Point for QCD?

• Dyson-Schwinger Analysis:    QCD Coupling has IR Fixed Point                                      

• Evidence from Lattice Gauge Theory 

• Define coupling from observable: indications of IR 
fixed point for QCD effective charges

• Confined or massive gluons: Decoupling of QCD vacuum 
polarization at small Q2  

• Justifies application of AdS/CFT in strong-coupling 
conformal window

40

Serber-Uehling

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]
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Relations 4 and 6 constrain αs,g1
at low Q2 (dashed line in Fig. 1). At large

Q2, Γp−n
1 can be estimated using Eq. 1 at leading twist and αs calculated

with pQCD. αs,g1
can be subsequently extracted (gray band).

These data and sum rules give αs,g1
(Q2) at any Q2. A similar result

is obtained using a model of Γp−n
1 and Eq. 2 (dotted line). The Burkert-

Ioffe11 model is used because of its good match with data.
One can compare our result to effective coupling constants extracted

using different processes. αs,τ was extracted from τ -decay data12 from the
OPAL experiment (inverted triangle). It is compatible with αs,g1

. The
Gross-Llewellyn Smith sum rule13 (GLS) can be used to form αs,F3

. The
sum rule relates the number of valence quarks in the hadron, nv, to the
structure function F3(Q2, x). At leading twist, it reads:

∫ 1

0

F3(Q
2, x)dx = nv

[

1 −
αs(Q2)

π
− 3.58

(

αs(Q2)

π

)2

− 20.21

(

αs(Q2)

π

)3
]

.(7)

We expect αs,F3
= αs,g1

at high Q2, since the Q2-dependence of Eq. 1
and 7 at leading twist are identical. The GLS sum was measured by the
CCFR collaboration14 and the resulting αs,F3

is shown by the star symbols.

Figure 1. Extracted αs,g1
(Q)/π using JLab data (up triangles), the GLS sum rule

(stars), the world Γp−n

1
data (open square), the Bjorken sum rule (gray band) and the

Burkert-Ioffe Model. αs,τ (Q)/π from OPAL is given by the reversed triangle. The
dashed line is the GDH constrain on the derivative of αs,g1

/π at Q2=0.

Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Deur, Korsch, et al:  Effective Charge from Bjorken Sum Rule
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FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

Constituent Counting Rules

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)

42

Conformal symmetry and PQCD predict  leading-twist 
scaling behavior of  fixed-CM angle exclusive amplitudes

Characteristic scale of QCD: 300 MeV

Many new  J-PARC, GSI, J-Lab, Belle, Babar tests

Farrar & sjb; Matveev, Muradyan, 
Tavkhelidze

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0
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(which is not unnatural for discussing effects of nuclear size) we may regard3 antishadowing and the EMC effect as

merely resulting from Fourier transforming a flat distribution (of finite length) in x−! This is corroborated in Fig. 11b,
where the reverse transform back to momentum (xB-) space is made, under the assumption that R

A(x−,Q2) is unity
for x− < w (and takes the values of Fig. 11a for x− > w). It is seen that the antishadowing and (most of) the EMC

effect is reproduced assuming no nuclear dependence in coordinate space for x− <∼ 5 fm. The nuclear effects can thus
be ascribed solely to shadowing.

The parton distribution qA(x−,Q2) in coordinate space is insensitive to the region of Fermi motion at large xB in
Fig. 9, where the structure function F2(xB,Q2) is small. The sizeable nuclear dependence of RAF2(xB,Q

2) at large xB
reflects the ratio of very small F2, which do not appreciably affect the inverse Fourier transform (11).

SIZE OF HARD SUBPROCESSES

The third aspect of shape that I would like to discuss concerns the size of coherent hard subprocesses in scattering

involving large momentum transfers. As sketched in Fig. 12, in inclusive DIS (ep→ eX) we expect that the virtual

photon (whose transverse coherence length is ∼ 1/Q) scatters off a single quark. The quark is typically part of a Fock
state with a hadronic,∼ 1 fm size. In elastic scattering (ep→ ep), where the entire Fock state must coherently absorb

the momentum, one might on the other hand expect [11] that only compact Fock states of the photon, with transverse

sizes r⊥ ∼ 1/Q will contribute. Thus the dynamics of inclusive and exclusive processes appears to be quite different.
In particular, the dependence on the electric charges of the quarks is expected to be, qualitatively,

!(ep→ eX) " #
q

e2q Inclusive, DIS

(13)

!(ep→ ep) " (#
q

eq)
2 Exclusive, form factor

! !

"

!#$

!"#$%&'()

% *+,-.

&

/0#$%&'()

! !

" "

#$ !

% *+12

FIGURE 12. The virtual photon scatters from single quarks in inclusive deep inelastic scattering (left). If the valence quarks
absorb equal shares of the momentum transfer in the exclusive ep→ ep process (right) only compact Fock states can contribute.

In contrast to these expectations the data suggests a close connection between inclusive and exclusive scattering.

The resonance production ep→ eN∗ cross sections (including N∗ = p) average the DIS scaling curve when plotted at

the same value of xB (or of the related Nachtmann variable $ ) [12]. Examples of this Bloom-Gilman duality are shown
in Fig. 13. A natural explanation of duality is that the same Fock states of the proton contribute in both cases [13].

Resonance formation occurs on a longer time scale than the hard subprocess, hence is incoherent with it and cannot

change the total cross section. Only the local mass distribution (resonance bumps) is sensitive to the hadronization

time scale.

3 Understanding the dynamics of nuclear dependence in momentum space is nevertheless interesting in its own right. See [10] for recent ideas about
the origin of the antishadowing enhancement.

Lepage, sjb

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

High Q2 from short distances

Fπ(Q2)

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

If αs(Q̃2) " constant

High Q2 from short distances

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

baryon distribution 
amplitude
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Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to 
hard exclusive processes, heavy hadron decays. Defined 
for Mesons, Baryons

• Evolution Equations from PQCD,                             
OPE, Conformal Invariance

• Compute from valence light-front wavefunction in 
light-cone gauge

44

φH(xi, Q)

φM (x,Q) =
∫ Q

d2"k ψqq̄(x,"k⊥)

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

x

1− x

k2
⊥ < Q2

Lepage, sjb

Lepage, sjb

Frishman,Lepage, Sachrajda, sjb

Peskin Braun

Efremov, Radyushkin Chernyak etal

∑

i

xi = 1
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(which is not unnatural for discussing effects of nuclear size) we may regard3 antishadowing and the EMC effect as

merely resulting from Fourier transforming a flat distribution (of finite length) in x−! This is corroborated in Fig. 11b,
where the reverse transform back to momentum (xB-) space is made, under the assumption that R

A(x−,Q2) is unity
for x− < w (and takes the values of Fig. 11a for x− > w). It is seen that the antishadowing and (most of) the EMC

effect is reproduced assuming no nuclear dependence in coordinate space for x− <∼ 5 fm. The nuclear effects can thus
be ascribed solely to shadowing.

The parton distribution qA(x−,Q2) in coordinate space is insensitive to the region of Fermi motion at large xB in
Fig. 9, where the structure function F2(xB,Q2) is small. The sizeable nuclear dependence of RAF2(xB,Q

2) at large xB
reflects the ratio of very small F2, which do not appreciably affect the inverse Fourier transform (11).

SIZE OF HARD SUBPROCESSES

The third aspect of shape that I would like to discuss concerns the size of coherent hard subprocesses in scattering

involving large momentum transfers. As sketched in Fig. 12, in inclusive DIS (ep→ eX) we expect that the virtual

photon (whose transverse coherence length is ∼ 1/Q) scatters off a single quark. The quark is typically part of a Fock
state with a hadronic,∼ 1 fm size. In elastic scattering (ep→ ep), where the entire Fock state must coherently absorb

the momentum, one might on the other hand expect [11] that only compact Fock states of the photon, with transverse

sizes r⊥ ∼ 1/Q will contribute. Thus the dynamics of inclusive and exclusive processes appears to be quite different.
In particular, the dependence on the electric charges of the quarks is expected to be, qualitatively,

!(ep→ eX) " #
q

e2q Inclusive, DIS

(13)

!(ep→ ep) " (#
q

eq)
2 Exclusive, form factor
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FIGURE 12. The virtual photon scatters from single quarks in inclusive deep inelastic scattering (left). If the valence quarks
absorb equal shares of the momentum transfer in the exclusive ep→ ep process (right) only compact Fock states can contribute.

In contrast to these expectations the data suggests a close connection between inclusive and exclusive scattering.

The resonance production ep→ eN∗ cross sections (including N∗ = p) average the DIS scaling curve when plotted at

the same value of xB (or of the related Nachtmann variable $ ) [12]. Examples of this Bloom-Gilman duality are shown
in Fig. 13. A natural explanation of duality is that the same Fock states of the proton contribute in both cases [13].

Resonance formation occurs on a longer time scale than the hard subprocess, hence is incoherent with it and cannot

change the total cross section. Only the local mass distribution (resonance bumps) is sensitive to the hadronization

time scale.

3 Understanding the dynamics of nuclear dependence in momentum space is nevertheless interesting in its own right. See [10] for recent ideas about
the origin of the antishadowing enhancement.

Lepage, sjb

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

High Q2 from short distances

Fπ(Q2)

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

If αs(Q̃2) " constant

High Q2 from short distances

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

baryon distribution 
amplitude
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Features of  Hard Exclusive 
Processes in PQCD 

• Factorization of  perturbative hard scattering subprocess 
amplitude and nonperturbative distribution amplitudes

• Dimensional counting rules  reflect conformal invariance:

• Hadron helicity conservation:

• Color transparency   Mueller, sjb;

• Hidden color        Ji, Lepage, sjb;

• Evolution of Distribution Amplitudes

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

L = 0 dominance

F2
F1
∼ 1

Q2

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

Lepage, sjb; Efremov, Radyushkin

Lepage, sjb; Duncan, Mueller
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Conformal QCD Window in Exclusive Processes

• Does αs develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada,

Deur . . .

• Recent lattice simulations: evidence that αs becomes constant and is not small in the infrared

Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).

• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Farrar and sjb (1973); Matveev et al. (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

• Example: Dirac proton form factor: F1(Q2) ∼
[
1/Q2

]n−1
, n = 3

Q4F p
1 (Q2) [GeV4]
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From: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).
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FIG. 3: Pion form factor as extracted in this work. Also
shown are e−π elastic data from CERN, and earlier pion elec-
troproduction data from DESY and Jefferson Lab. The ear-
lier Jefferson Lab data are taken from reference [9]. The data
point at Q2 = 1.60 GeV2 from [9] has been shifted from its
central value for visual representation. The curves are from a
Dyson-Schwinger equation (solid, [17]), QCD sum rules (dot-
ted, [14]), dispersion relations with QCD constraint (dashed,
[15]), and from a pQCD calculation (dashed-dotted, [18]).

inance the longitudinal π−/π+ ratios in 2H were exam-
ined. Since the pole term is purely isovector this ratio is
expected to be close to unity and a significant deviation
from unity would indicate the presence of an isoscalar
background. The preliminary analysis of the longitudi-
nal π−/π+ ratios is consistent with unity.

In Figure 3, our results are shown along with re-
sults from CERN, DESY, earlier Jefferson Lab data, and
some representative calculations. Comparing the result
at Q2 = 1.60 GeV2 to the earlier Jefferson Lab data
point at a lower value of W allows for a direct test of the
theoretical model dependence. A higher value of W al-
lows for a measurement at smaller values of −t, at closer
proximity to the pion pole. The data are consistent with
the previous Jefferson Lab Fπ measurement at a value of
Q2 = 1.60 GeV2 and suggest a small model uncertainty
due to fitting the VGL model to the data. The data in-
dicate a one sigma deviation from a monopole form fac-
tor that yields the measured charge radius. That form
factor is up to Q2=2.5 GeV2 indistinguishable from the
solid curve in Figure 3. Various models provide a good
description of the measured values for Fπ up to Q2=1.60
GeV2. The data are well described by the calculation of
Nesterenko and Radyushkin [14], in which a QCD sum
rule framework for the soft contribution to Fπ as well as
an asymptotically dominant hard gluon exchange term
is used. The dispersion relation calculation by Geshken-

bein [15] also agrees well with the data. The data are
also reasonably well described by the Dyson-Schwinger
calculation by Maris and Tandy, which is based on the
Bethe-Salpeter equation with dressed quark and gluon
propagators. All parameters in the latter calculation are
determined without the use of Fπ data [16, 17]. Perturba-
tive QCD calculations of which one is shown in Figure 3
give values of Q2Fπ around 0.10 GeV2 in the region of
our measurements.

In summary, we have measured separated 1H(e,e′π+)n
cross sections at values of Q2=1.60 and 2.45 GeV2 at
W=2.22 GeV. The charged pion form factor was ex-
tracted from the separated longitudinal cross section us-
ing a Regge model. The data are consistent with the
previous Jefferson Lab result at Q2 = 1.60 GeV2. The
data deviate by one sigma from a monopole form factor
obeying the measured charge radius, but are still far from
the values expected from pQCD calculations.
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Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)
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FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.

10

Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance 

Constituent counting rules
Farrar, sjb; Muradyan, Matveev, Tavkelidze

No sign of running coupling

49

θcm = 90o

ψd(xi,#k⊥i) = ψbody
d × ψn × ψp

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1 gives F2N ∼
x1−αR

Nonsinglet Kuti-Weisskoff F2p − F2n ∝
√

xbj

at small xbj.
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Quark-Counting : dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

powern = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

Best Fit  

cm2

GeV2

Reflects
underlying 
conformal 
scale-free 

interactions
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• Polchinski & Strassler: AdS/CFT  builds in conformal symmetry at 
short distances; counting rules for form factors and hard exclusive 
processes; non-perturbative derivation

• Goal: Use AdS/CFT to provide an approximate model of hadron 
structure with confinement at large distances, conformal behavior 
at short distances

• de Teramond, sjb:  AdS/QCD Holographic Model: Initial “semi-
classical” approximation to QCD.  Predict light-quark hadron 
spectroscopy,  form factors.

• Karch, Katz, Son, Stephanov: Linear Confinement

• Mapping of AdS amplitudes to 3+ 1 Light-Front equations, 
wavefunctions

• Use AdS/CFT wavefunctions as expansion basis for diagonalizing 
HLFQCD ; variational methods

52
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• Use mapping of conformal group SO(4,2) to AdS5

• Scale Transformations represented by wavefunction  
in 5th dimension

• Hard wall model: Confinement at large distances and 
conformal symmetry in interior

• Match solutions at small z to conformal dimension of 
hadron wavefunction at short distances

• Truncated space simulates “bag” boundary conditions

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

ψ(z0) = 0

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

AdS/CFT
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d = 4

2 Bosonic Modes

• Conformal metric: ds2 = g!mdx!dxm. x! = (xµ, z), g!m →
(
R2/z2

)
η!m .

• Action for massive scalar modes on AdSd+1:

S[Φ] =
1
2

∫
dd+1x

√
g 1

2

[
g!m∂!Φ∂mΦ− µ2Φ2

]
,
√

g → (R/z)d+1.

• Equation of motion
1
√

g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0.

• Factor out dependence along xµ-coordinates , ΦP (x, z) = e−iP ·x Φ(z), PµPµ =M2 :
[
z2∂2

z − (d− 1)z ∂z + z2M2 − (µR)2
]
Φ(z) = 0.

• Solution: Φ(z)→ z∆ as z → 0,

Φ(x, z) = Cz
d
2 J∆− d

2
(zM) , ∆ = 1

2

(
d +

√
d2 + 4µ2R2

)
.

• Normalization

Rd−1
∫ Λ−1

QCD

0

dz

zd−1
Φ2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

∆ = 2 + L (µR)2 = L2 − 4d = 4
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AdS Schrodinger Equation for bound state 
of  two scalar constituents:

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

Derived from variation of Action in AdS5

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

Hard wall model: truncated space

Let Φ(z) = z3/2φ(z)

Interpret L
 as orbital angular 

momentum
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD

• Normalizable AdS modes Φ(z)

10 2 3 4
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0
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5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

-4

0

2

4

z

Φ(z)

2-2006
8721A8

Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

z∆

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

z∆

z0

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

z∆

z0 = 1
ΛQCD

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Match fa#-off at sma# z to conformal twist-dimension 
at short distances

∆ = 2 + L
twist

S = 0

O2+L
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Fig: Orbital and radial AdS modes in the hard wall model for ΛQCD = 0.32 GeV .
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Fig: Light meson and vector meson orbital spectrum ΛQCD = 0.32 GeV

Exploring QCD, Cambridge, August 20-24, 2007 Page 23

S = 0 S = 1
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State I JP L S O

π(140) 1 0− 0 0 qγ5
1
2#τq

b1(1235) 1 1+ 1 0 −iqγ5
#∂ 1

2#τq

π2(1670) 1 2+ 2 0 −qγ5
1
2 (3∂i∂j − δij

#∂2) 1
2#τq

· · ·

ρ(770) 1 1− 0 1 q†#α 1
2#τq

ω(782) 0 1− 0 1 q†#α q

a1(1260) 1 1+ 1 1 −iq†(#α× #∂) 1
2τq

f2(1270) 0 2+ 1 1 −iq†[ 32 (αi∂j + αj∂i)− #α · #∂δij ]q

f1(1285) 0 1+ 1 1 −iq†(#α× #∂)q

a2(1320) 1 2+ 1 1 −iq†[ 32 (αi∂j + αj∂i)− #α · #∂δij ] 12#τq

a0(1450) 1 0+ 1 1 −iq†#α · #∂ 1
2#τq

· · ·

Tensor decomposition of total angular momentum interpolating operators O, [O] = 2 + L

Exploring QCD, Cambridge, August 20-24, 2007 Page 22
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AdS Schrodinger Equation for bound state 
of  two scalar constituents:

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

Derived from variation of Action in AdS5

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

the generators of S

Soft wall model: Harmonic oscillator confinement

Hard wall model: truncated space

Let Φ(z) = z3/2φ(z)
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Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for κ = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0
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Higher Spin Bosonic Modes SW

• Effective LF Schrödinger wave equation
[
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L+ S−1)

]
φS(ζ) =M2φS(ζ)

with eigenvalues M2 = 2κ2(2n + 2L + S).

• Compare with Nambu string result (rotating flux tube): M2
n(L) = 2πσ (n + L + 1/2) .

0

2

(a) (b)

4

(G
eV

2 )

0 2 4
5-2006
8694A20

ω (782)
ρ (770)

a2 (1320)

f2 (1270)

ρ3 (1690)

ω3 (1670)

f4 (2050)
a4 (2040)

L
0 2 4

n

ρ (770)

ρ (1450)

ρ (1700)

Vector mesons orbital (a) and radial (b) spectrum for κ = 0.54 GeV.

• Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo,

De Facio, Jugeau and Nicotri( 2007).

Exploring QCD, Cambridge, August 20-24, 2007 Page 27

[
− d2

dz2
− 1− 4L2

4z2
+ κ4z2 + 2κ2(L+ S−1)

]
φS(z) =M2φS(z)

S = 1S = 1
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Higher Spin Bosonic Modes SW

• Effective LF Schrödinger wave equation
[
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L+ S−1)

]
φS(ζ) =M2φS(ζ)

with eigenvalues M2 = 2κ2(2n + 2L + S).

• Compare with Nambu string result (rotating flux tube): M2
n(L) = 2πσ (n + L + 1/2) .

Vector mesons orbital (a) and radial (b) spectrum for κ = 0.54 GeV.

• Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo,

De Facio, Jugeau and Nicotri( 2007).

S = 1
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Linear particle trajectories

Plot of spins of families of particles against their squared masses:

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

• 4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.

Linear particle trajectories

Plot of spins of families of particles against their squared masses:

0
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• 4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.

AdS/QCD Soft Wall Model -- Reproduces  Linear Regge Trajectories
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

Hadronic Form Factor in Space and Time-Like Regions
SJB and GdT in preparation

• The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming

and outgoing hadron ΦI and ΦF and the non-normalizable mode J , dual to the external

source (hadron spin σ):

F (Q2)I→F = R3+2σ
∫ ∞

0

dz

z3+2σ
e(3+2σ)A(z)ΦF (z) J(Q, z) ΦI(z)

! R3+2σ
∫ zo

0

dz

z3+2σ
ΦF (z) J(Q, z) ΦI(z),

• J(Q, z) has the limiting value 1 at zero momentum transfer, F (0) = 1, and has as boundary
limit the external current, Aµ = εµeiQ·xJ(Q, z). Thus:

lim
Q→0

J(Q, z) = lim
z→0

J(Q, z) = 1.

• Solution to the AdS Wave equation with boundary conditions at Q = 0 and z → 0:

J(Q, z) = zQK1(zQ).

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 21
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Current Matrix Elements in AdS Space (HW)

• Hadronic matrix element for EM coupling with string mode Φ(x!), x! = (xµ, z)

ig5

∫
d4x dz

√
g A!(x, z)Φ∗

P ′(x, z)
←→
∂ !ΦP (x, z).

• Electromagnetic probe polarized along Minkowski coordinates (Q2 = −q2 > 0)

A(x, z)µ = εµe−iQ·xJ(Q, z), Az = 0.

• Propagation of external current inside AdS space described by the AdS wave equation

[
z2∂2

z − z ∂z − z2Q2
]
J(Q, z) = 0,

subject to boundary conditions J(Q = 0, z) = J(Q, z = 0) = 1.

• Solution

J(Q, z) = zQK1(zQ).

• Substitute hadronic modes Φ(x, z) in the AdS EM matrix element

ΦP (x, z) = e−iP ·x Φ(z), Φ(z)→ z∆, z → 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 32
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n〉. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
[

1
Q2

]τ−1

,

where τ = ∆n − σn, σn =
∑n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT

66

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2

⊥

X = cūd̄ū

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) Φ(z)
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
[
z2∂2

z − z
(
1 + 2κ2z2

)
∂z −Q2z2

]
Jκ(Q, z) = 0.

• Solution bulk-to-boundary propagator

Jκ(Q, z) = Γ
(

1 +
Q2

4κ2

)
U

(
Q2

4κ2
, 0, κ2z2

)
,

where U(a, b, c) is the confluent hypergeometric function

Γ(a)U(a, b, z) =
∫ ∞

0
e−ztta−1(1 + t)b−a−1dt.

• Form factor in presence of the dilaton background ϕ = κ2z2

F (Q2) = R3
∫

dz

z3
e−κ2z2

Φ(z)Jκ(Q, z)Φ(z).

• For large Q2 " 4κ2

Jκ(Q, z)→ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

sjb and GdT,
Grigoryan and Radyushkin
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Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Hard Wall: Truncated Space Confinement

Soft Wall: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation from Baldini, Kloe and Volmer

de Teramond, sjb
See also: Radyushkin 
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Space and Time-Like Pion Form Factor

• Hadronic string modes Φπ(z)→ z2 as z → 0 (twist τ = 2)

ΦHW
π (z) =

√
2ΛQCD

R3/2J1(β0,1)
z2J0 (zβ0,1ΛQCD) ,

ΦSW
π (z) =

√
2κ

R3/2
z2.

• Fπ has analytical solution in the SW model Fπ(Q2) = 4κ2

4κ2+Q2 .

-2.5 -2.0 -1.5 -1.0 -0.5 0

0.2

0

0.4

0.6

0.8

1.0

7-2007
8755A3q2  (GeV2)

F π
 (q

2 )

Fig: Fπ(q2) for κ = 0.375 GeV and ΛQCD = 0.22 GeV. Continuous line: SW, dashed line: HW.

Exploring QCD, Cambridge, August 20-24, 2007 Page 38
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Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

• Form factor for a string mode with scaling dimension τ , Φτ in the SW model

F (Q2) = Γ(τ)
Γ

(
1+ Q2

4κ2

)

Γ
(
τ + Q2

4κ2

) .

• For τ = N , Γ(N + z) = (N − 1 + z)(N − 2 + z) . . . (1 + z)Γ(1 + z).

• Form factor expressed as N − 1 product of poles

F (Q2) =
1

1 + Q2

4κ2

, N = 2,

F (Q2) =
2(

1 + Q2

4κ2

)(
2 + Q2

4κ2

) , N = 3,

· · ·

F (Q2) =
(N − 1)!(

1 + Q2

4κ2

)(
2 + Q2

4κ2

)
· · ·

(
N−1+ Q2

4κ2

) , N.

• For large Q2:

F (Q2)→ (N − 1)!
[
4κ2

Q2

](N−1)

.

Exploring QCD, Cambridge, August 20-24, 2007 Page 43
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AdS/QCD G. F. de Téramond

Holographic Model for QCD Light-Front Wavefunctions

SJB and GdT in preparation

• Drell-Yan-West form factor in the light-cone (two-parton state)

F (q2) =
∑

q

eq

∫ 1

0
dx

∫
d2!k⊥
16π3

ψ∗P ′(x,!k⊥ − x!q⊥) ψP (x,!k⊥).

• Fourrier transform to impact parameter space!b⊥

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ ei!b⊥·!k⊥ψ̃(x,!b⊥)

• Find (b = |!b⊥|) :

F (q2) =
∫ 1

0
dx

∫
d2!b⊥ eix!b⊥·!q⊥

∣∣ψ̃(x, b)
∣∣2

= 2π

∫ 1

0
dx

∫ ∞

0
b db J0 (bqx)

∣∣ψ̃(x, b)
∣∣2,

Caltech High Energy Seminar, Feb 6, 2006 Page 33

Soper

71

Light-Front Representation 
of Two-Body Meson Form Factor
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Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

with ρ̃(x, ζ) QCD effective transverse charge density.

• Transversality variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ),

the solution for J(Q, ζ) = ζQK1(ζQ) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

73

Holography: Unique mapping derived from equality of LF 
and AdS  formula for current matrix elements

ψ(x, ζ) =
√

x(1− x)ζ−1/2φ(ζ)

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ

[
− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −
1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent

74

+κ4ζ2 confining potential:
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Consider the AdS5 metric:

ds2 = R2

z2 (ηµνdxµdxν − dz2).

ds2 invariant if xµ → λxµ, z → λz,

Maps scale transformations to scale changes of the the holographic coordinate z.

We define light-front coordinates x± = x0 ± x3.

Then ηµνdxµdxν = dx0
2 − dx3

2 − dx⊥
2 = dx+dx− − dx⊥

2

and

ds2 = −R2

z2 (dx⊥
2 + dz2) for x+ = 0.

• ds2 is invariant if dx⊥
2 → λ2dx⊥

2, and z → λz, at equal LF time.

• Maps scale transformations in transverse LF space to scale changes of the holographic coordinate z.

• Holographic connection of AdS5 to the light-front.

• Casimir for the rotation group SO(2).

Exploring QCD, Cambridge, August 20-24, 2007 Page 3

Ladder Construction of Orbital States

• Orbital excitations constructed by the L-th application of the raising operator

a†
L = −iΠL

on the ground state:

a†|L〉 = cL|L + 1〉.

• In the light-front ζ-representation

φL(ζ) = 〈ζ|L〉 = CL

√
ζ (−ζ)L

(
1
ζ

d

dζ

)L

J0(ζM)

= CL

√
ζJL (ζM) .

• The solutions φL are solutions of the light-front equation (L = 0,±1,±2, · · · )
[
− d2

dζ2
− 1− L2

4ζ2

]
φ(ζ) = M2φ(ζ),

• Mode spectrum from boundary conditions : φ (ζ = 1/ΛQCD) = 0.

• The effective wave equation in the two-dim transverse LF plane has the Casimir representation L2

corresponding to the SO(2) rotation group [The Casimir for SO(N) ∼ SN−1 is L(L + N − 2) ].

Exploring QCD, Cambridge, August 20-24, 2007 Page 20

Light-Front AdS5 Duality
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• Identify the zero mode (C = −4κ2) with the pion.

• Light-front Hamiltonian equation

HLF |φ〉 = M2|φ〉,

leads to effective LF Schrödinger wave equation (KKSS)
[
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L−1)

]
φ(ζ) = M2φ(ζ)

with eigenvalues M2 = 4κ2(n + L) and eigenfunctions

φL(ζ) = κ1+L

√
2n!

(n + L)!
ζ1/2+Le−κ2ζ2/2LL

n

(
κ2ζ2

)
.

• Transverse oscillator in the LF plane with SO(2) rotation subgroup has Casimir L2 representing

rotations for the transverse coordinates b⊥ in the LF.

• SW model is a remarkable example of integrability to a non-conformal extension of AdS/CFT [Chim

and Zamolodchikov (1992) - Potts Model.]

Exploring QCD, Cambridge, August 20-24, 2007 Page 25
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Example: Pion LFWF

• Two parton LFWF bound state:

ψ̃HW
qq/π(x,b⊥) =

ΛQCD

√
x(1− x)√

πJ1+L(βL,k)
JL

(√
x(1− x) |b⊥|βL,kΛQCD

)
θ

(
b2
⊥ ≤

Λ−2
QCD

x(1− x)

)
,

ψ̃SW
qq/π(x,b⊥) = κL+1

√
2n!

(n + L)!
[x(1− x)]

1
2+L|b⊥|Le−

1
2 κ2x(1−x)b2

⊥LL
n

(
κ2x(1− x)b2

⊥
)
.

(a) (b)b b

xx

ψ
(x,
b)
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Fig: Ground state pion LFWF in impact space. (a) HW model ΛQCD = 0.32 GeV, (b) SW model κ = 0.375 GeV.
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Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb
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φM(x, Q0) ∝
√

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

ψM (x, k⊥) =
4π

κ
√

x(1− x
e
− k2

⊥
2κ2x(1−x)

κ = 0.375 GeV

massless quarks
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Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to 
hard exclusive processes, heavy hadron decays. Defined 
for mesons, baryons

• Evolution Equations from PQCD,                             
OPE, Conformal Invariance

• Compute from valence light-front wavefunction in 
light-cone gauge

79

φH(xi, Q)

φM (x,Q) =
∫ Q

d2"k ψqq̄(x,"k⊥)

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

x

1− x

k2
⊥ < Q2

Lepage, sjb

Lepage, sjb

Frishman,Lepage, Sachrajda, sjb

Peskin Braun

Efremov, Radyushkin Chernyak etal

∑

i

xi = 1
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Second Moment of  Pion Distribution Amplitude

< ξ2 >=
∫ 1

−1
dξ ξ2φ(ξ)

ξ = 1− 2x

< ξ2 >= 1/5

< ξ2 >= 1/4

φasympt ∝ x(1− x)

φAdS/QCD ∝
√

x(1− x)

Sachrajda Lattice: < ξ2 >= 0.28± 0.02
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Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

HW: Truncated Space Confinement

SW: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation from Baldini, Kloe and Volmer

de Teramond, sjb
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Note: Contributions to Mesons Form Factors at Large Q in AdS/QCD

• Write form factor in terms of an effective partonic transverse density in impact space b⊥

Fπ(q2) =
∫ 1

0
dx

∫
db2 ρ̃(x, b,Q),

with ρ̃(x, b,Q) = πJ0 [b Q(1− x)] |ψ̃(x, b)|2 and b = |b⊥|.

• Contribution from ρ(x, b,Q) is shifted towards small |b⊥| and large x→ 1 as Q increases.

0

0.2

0.4

0

0.5

1.0

0

0.5

1.0

01020 01020

0

0.2

0.4

(a) (b)

7-2007
8755A5

bb

xx

ρ(
x,b
)

Fig: LF partonic density ρ(x, b,Q): (a) Q = 1 GeV/c, (b) very large Q.

Exploring QCD, Cambridge, August 20-24, 2007 Page 41
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Example: Evaluation of QCD Matrix Elements

• Pion decay constant fπ defined by the matrix element of EW current J+
W :

〈
0

∣∣ψuγ+ 1
2(1− γ5)ψd

∣∣ π−
〉

= i
P+fπ√

2
with

∣∣π−
〉

= |du〉 =
1√
NC

1√
2

NC∑

c=1

(
b†c d↓d

†
c u↑ − b†c d↑d

†
c u↓

) ∣∣0
〉
.

• Find light-front expression (Lepage and Brodsky ’80):

fπ = 2
√

NC

∫ 1

0
dx

∫
d2$k⊥
16π3

ψqq/π(x, k⊥).

• Using relation between AdS modes and QCD LFWF in the ζ → 0 limit

fπ =
1
8

√
3
2

R3/2 lim
ζ→0

Φ(ζ)
ζ2

.

• Holographic result (ΛQCD =0.22 GeV and κ=0.375 GeV from pion FF data): Exp: fπ =92.4 MeV

fHW
π =

√
3

8J1(β0,k)
ΛQCD = 91.7 MeV, fSW

π =
√

3
8

κ = 81.2 MeV,

Exploring QCD, Cambridge, August 20-24, 2007 Page 42
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Diffractive Dissociation of Pion  
into Quark Jets

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus
Nucleus left Intact!

E791 Ashery et al.

84

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2
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E791 FNAL Diffractive DiJet 

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q

q̄

N

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q

q̄

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

 Gunion, Frankfurt, Mueller, Strikman, sjb
Frankfurt, Miller, Strikman
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Key Ingredients in  E791 Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact

Brodsky Mueller
Frankfurt Miller Strikman

Diffraction, Rapidity gap

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q
86

A

A′

σ = x− = ct − x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)

A

A′

σ = x− = ct − x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

Bertsch, Gunion, Goldhaber, sjb
A. H. Mueller,  sjb
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

88

Measure pion LFWF in diffractive dijet production 
Confirmation of color transparency 

Mueller, sjb; Bertsch et al; 
Frankfurt, Miller, Strikman

Conventional Glauber Theory Ruled 
Out ! 

Factor of 7

Ashery E791 
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D. Ashery / Progress in Particle and Nuclear Physics 56 (2006) 279–339 301

Table 1

The exponent in σ ∝ Aα , experimental results for coherent dissociation and the color-transparency (CT) predictions [69]

kt bin (GeV/c) α #αstat #αsys #α α(CT)

1.25–1.5 1.64 ±0.05 +0.04–0.11 +0.06–0.12 1.25

1.5–2.0 1.52 ±0.09 ±0.08 ±0.12 1.45

2.0–2.5 1.55 ±0.11 ±0.12 ±0.16 1.60

Fig. 14. q2t distributions of dijets with 1.5 ≤ kt ≤ 2.0 GeV/c for the platinum and carbon targets. The lines are fits of the

MC simulations to the data: coherent nuclear dissociation (dotted line), coherent nucleon/incoherent nuclear dissociation

(dashed line), background (dashed–dotted line) and total fit (solid line).

note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated

in vector meson electroproduction and in diffractive dissociation of the pion to dijets. It was not

unambiguously verified for the proton. It is important to understand the experimental results for

the proton: why (e, e′ p) experiments show no sign of CT and why (p, 2p) experiments show a

rise and fall of transparency, strongly deviating from Glauber calculations and at the same time

not reproducing the expected CT signature. It can be expected that if the effect exists in the qq̄

system it should also exist for the qqq system. One could argue that the probability to find a qq̄ at

short distances is higher than that to find a qqq in short distances. If we interpret these systems as

the valence components of their respective LCWFs, this may indicate that the contribution of the

valence component to the total LCWF may be different for mesons and baryons. The difficulties

encountered in understanding the anomalous spin effects in pp scattering [25,26] leave this as an

open question. For observation of CT with protons there might also be the problem of choosing

the sensitive process: reaction, momentum transfer etc. that would select a proton in a PLC

state and the observable that would identify it as such. It may be that diffractive dissociation

of protons or perhaps baryon photoproduction would show this effect. Following the example

Nuclear coherence Nuclear coherence

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

LIoffe > 4fm ∼ RA
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D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI-JETS YIELD

dσ

dk2
t

∝
∣∣∣∣αs(k

2
t )G(x, k2

t )
∣∣∣∣
2

∣∣∣∣∣∣∣

∂2

∂k2
t

ψ(u, kt)

∣∣∣∣∣∣∣

2

With ψ ∼ φ
k2
t
, weak φ(k2

t ) and αs(k2
t ) dependences and G(x, k2

t ) ∼ k1/2
t : dσ

dkt
∼ k−6

t

For low kt:

Gaussian: ψ ∼ e−βk2
t (Jakob and Kroll)

Coulomb: ψ(p) =
(

1
1+p2/p2

a

)2
(Pauli)

High Transverse 
momentum  dependence 

consistent with PQCD, 
ERBL Evolution

90

Two Componentsdσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

E791 Diffractive Di-Jet transverse momentum distribution

Gaussian component similar 
to AdS/CFT HO LFWF
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310 D. Ashery / Progress in Particle and Nuclear Physics 56 (2006) 279–339

Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-

verse momentum transferred to the nucleus and b = 〈R2〉
3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:

∣∣∣∣

∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣
2

= |φ(u, k2) − φ(u, k1)|2. (48)
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Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-

verse momentum transferred to the nucleus and b = 〈R2〉
3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:

∣∣∣∣

∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣
2

= |φ(u, k2) − φ(u, k1)|2. (48)

x

91

x x

CZ
asympt

Ashery E791 
Narrowing of x distribution at higher jet transverse momentum 

Possibly two components:  
Nonperturbative (AdS/CFT) and 

Perturbative (ERBL) 
Evolution to asymptotic distribution

gu→ γu

pp→ γX

E dσ
d3p

(pp→ γX) = F (θcm,xT )
p4
T

− d
dζ2 ≡

k2
⊥

x(1−x)

Conjecture for massive quarks

− d
dζ2 → − d

dζ2 + m2
a

x +
m2

b
1−x ≡

k2
⊥+m2

a
x +

k2
⊥+m2

b
1−x

φ(x) ∝
√

x(1− x)
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0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2
φ π(x

)

Linear potential(m=0.22 GeV,β=0.3659 GeV)

HO potential(m=0.25 GeV,β=0.3194 GeV)

φ
as

(x)~x(1-x)

φ
AdS/CFT

(x)~[x(1-x)]
1/2

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions

AdS/CFT :
Oberwölz

Π(Q2) = α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasympt ∼ x(1− x)
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shown in Fig. 1. The corresponding predictions for !R and

!MS using the CSRs at NLO are also shown. Note that for

low Q2 the couplings, although frozen, are large. Thus the

NLO and higher-order terms in the CSRs are large, and in-

verting them perturbatively to NLO does not give accurate

results at low scales. In addition, higher-twist contributions

to !V and !R , which are not reflected in the CSR relating

them, may be expected to be important for low Q2 "35#.
It is clear that exclusive processes such as the pion and

photon to pion transition form factors can provide a valuable

window for determining the magnitude and the shape of the

effective charges at quite low momentum transfers. In par-

ticular, we can check consistency with the !V prediction

from lattice gauge theory. A complimentary method for de-

termining !V at low momentum is to use the angular anisot-

ropy of e!e"→QQ̄ at the heavy quark thresholds "36#. It
should be emphasized that the parametrization $18% is just an
approximate form. The actual behavior of !V(Q

2) at low Q2

is one of the key uncertainties in QCD phenomenology. In

this paper we shall use exclusive observables to deduce in-

formation on this quantity.

IV. APPLICATIONS

As we have emphasized, exclusive processes are sensitive

to the magnitude and shape of the QCD couplings at quite

low momentum transfer: QV
*2!e"3Q2!Q2/20 and

QR
*2!Q2/50 "37#. The fact that the data for exclusive pro-

cesses such as form factors, two photon processes such as

&&→'!'", and photoproduction at fixed (c .m . are consis-
tent with the nominal scaling of the leading-twist QCD pre-

dictions $dimensional counting% at momentum transfers Q up

to the order of a few GeV can be immediately understood if

the effective charges !V and !R are slowly varying at low

momentum. The scaling of the exclusive amplitude then fol-

lows that of the subprocess amplitude TH with effectively

fixed coupling. Note also that the Sudakov effect of the end-

point region is the exponential of a double log series if the

coupling is frozen, and thus is strong.

In Fig. 2, we compare the recent CLEO data "38# for the
photon to pion transition form factor with the prediction

Q2F&'$Q2%#2 f '" 1"
5

3

!V$e"3/2Q %

' # . $19%

The flat scaling of the Q2F&'(Q
2) data from Q2#2 to

Q2#8 GeV2 provides an important confirmation of the ap-

plicability of leading twist QCD to this process. The magni-

tude of Q2F&'(Q
2) is remarkably consistent with the pre-

dicted form assuming the asymptotic distribution amplitude

and including the LO QCD radiative correction with

!V(e
"3/2Q)/'!0.12. Radyushkin "39#, Ong "40# and Kroll

"41# have also noted that the scaling and normalization of the
photon-to-pion transition form factor tends to favor the

asymptotic form for the pion distribution amplitude and rules

out broader distributions such as the two-humped form sug-

gested by QCD sum rules "42#. One cannot obtain a unique
solution for the non-perturbative wave function from the F'&
data alone. However, we have the constraint that

1

3
$ 1

1"x
% &1"

5

3

!V$Q*%

' '!0.8 $20%

"assuming the renormalization scale we have chosen in Eq.
$13% is approximately correct#. Thus one could allow for

some broadening of the distribution amplitude with a corre-

sponding increase in the value of !V at low scales.

In Fig. 3 we compare the existing measurements of the

space-like pion form factor F'(Q
2) "43,44# $obtained from

the extrapolation of &*p→'!n data to the pion pole% with
the QCD prediction $10%, again assuming the asymptotic
form of the pion distribution amplitude. The scaling of the

FIG. 1. The coupling function !V(Q
2) as given in Eq. $18%.

Also shown are the corresponding predictions for !MS̄ and !R fol-

lowing from the NLO commensurate scale relations "Eqs. $2% and
$9%#.

FIG. 2. The &→'0 transition form factor. The solid line is the

full prediction including the QCD correction "Eq. $19%#; the dotted
line is the LO prediction Q2F&'(Q

2)#2 f ' .

FIG. 3. The space-like pion form factor.
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Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions

AdS/CFT :

Oberwölz

Π(Q2) = α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

where !M(x ,Q̃) is the process-independent meson distribu-

tion amplitude, which encodes the non-perturbative dynam-

ics of the bound valence Fock state up to the resolution scale

Q̃ , and

TH"x ,y ,Q2#!
16$CF%s"&#

"1"x #"1"y #Q2 '1#O"%s#( "6#

is the leading-twist perturbatively-calculable subprocess am-

plitude )*q(x) q̄ (1"x)→q(y) q̄ (1"y), obtained by re-

placing the incident and final mesons by valence quarks col-

linear up to the resolution scale Q̃ . The contributions from

non-valence Fock states and the correction from neglecting

the transverse momentum in the subprocess amplitude from

the non-perturbative region are higher twist, i.e., power-law

suppressed. The transverse momenta in the perturbative do-

main lead to the evolution of the distribution amplitude and

to NLO corrections in %s . The contribution from the end-

point regions of integration, x*1 and y*1, are power-law
and Sudakov suppressed and thus can only contribute correc-

tions at higher order in 1/Q '4(.
The distribution amplitude !(x ,Q̃) is boost and gauge

invariant and evolves in lnQ̃ through an evolution equation

'4(. It can be computed from the integral over transverse

momenta of the renormalized hadron valence wave function

in the light-cone gauge at fixed light-cone time '4(:

!"x ,Q̃ #!! d2k!!+" Q̃2"
k!!
2

x"1"x #
#,"Q̃ #"x ,k!!#. "7#

The physical pion form factor must be independent of the

separation scale Q̃ . The natural variable in which to make
this separation is the light-cone energy, or equivalently the

invariant mass M2!k!!
2 /x(1"x), of the off-shell partonic

system '20,4(. Any residual dependence on the choice of Q̃
for the distribution amplitude will be compensated by a cor-
responding dependence of the NLO correction in TH . How-
ever, the NLO prediction for the pion form factor depends
strongly on the form of the pion distribution amplitude as
well as the choice of renormalization scale & and scheme.
It is straightforward to obtain the commensurate scale re-

lation between F$ and %V following the procedure outlined
above. The appropriate BLM scale for F$ is determined
from the explicit calculations of the NLO corrections given
by Dittes and Radyushkin '21( and Field et al. '22(. These
may be written in the form 'A(&)n f#B(&)(%s /$ , where A
is independent of the separation scale Q̃ . The n f dependence
allows one to uniquely identify the dependence on -0, which
is then absorbed into the running coupling by a shift to the

BLM scale Q*!e3A(&)& . An important check of self-

consistency is that the resulting value for Q* is independent
of the choice of the starting scale & .
Combining this result with the BLM scale-fixed expres-

sion for %V , and eliminating the intermediate coupling, we

find

F$"Q2#!!
0

1

dx!$"x #!
0

1

dy!$"y #
16$CF%V"QV#

"1"x #"1"y #Q2" 1#CV

%V"QV#

$ #
!"4!

0

1

dx!$"x #!
0

1

dy!$"y #V"QV
2 #" 1#CV

%V"QV#

$ # , "8#

where CV!"1.91 is the same coefficient one would obtain
in a conformally invariant theory with -!0, and

QV
2.(1"x)(1"y)Q2. In this analysis we have assumed

that the pion distribution amplitude has the asymptotic form

!$!!3 f $x(1"x), where the pion decay constant is f $$93
MeV. In this simplified case the distribution amplitude does

not evolve, and there is no dependence on the separation

scale Q̃ . This commensurate scale relation between F$(Q
2)

and /%V(QV)0 represents a general connection between the
form factor of a bound-state system and the irreducible ker-

nel that describes the scattering of its constituents.

Alternatively, we can express the pion form factor in

terms of other effective charges such as the coupling %R(!s)
that defines the QCD radiative corrections to the e#e"→X

cross section: R(s).31eq
2'1#%R(!s)/$( . The CSR be-

tween %V and %R is

%V"QV#!%R"QR#" 1"
25

12

%R

$
#••• # , "9#

where the ratio of commensurate scales to this order is

QR /QV!e23/12"223$0.614.
If we expand the QCD coupling about a fixed point in

NLO '10(: %s(QV)$%s(Q0)'1"„-0%s(Q0)/2$…ln(QV /Q0)(,
then the integral over the effective charge in Eq. "8# can be
performed explicitly. Thus, assuming the asymptotic distri-

bution amplitude, the pion form factor at NLO is

Q2F$"Q2#!16$ f$
2%V"Q*#" 1"1.91

%V"Q*#

$ # , "10#

where Q*!e"3/2Q . In this approximation lnQ*2

!/ln(1"x)(1"y)Q20, in agreement with the explicit calcula-
tion. A striking feature of this result is that the physical scale

controlling the meson form factor in the %V scheme is very

low: e"3/2Q$0.22Q , reflecting the characteristic momentum
transfer experienced by the spectator valence quark in

lepton-meson elastic scattering.

We may also determine the renormalization scale of %V

for more general forms of the coupling by direct integration

over x and y in Eq. "8#, assuming a specific analytic form for
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Lepage, sjb C. Ji, A. Pang, D. Robertson, sjb

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ

Choi,   Ji
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Higher Spin Bosonic Modes HW

• Each hadronic state of integer spin S ≤ 2 is dual to a normalizable string mode

Φ(x, z)µ1µ2···µS = εµ1µ2···µS e−iP ·x ΦS(z).

with four-momentum Pµ and spin polarization indices along the 3+1 physical coordinates.

• Wave equation for spin S-mode W. S. l’Yi, Phys. Lett. B 448, 218 (1999)

[
z2∂2

z − (d+1−2S)z ∂z + z2M2−(µR)2
]
ΦS(z) = 0,

• Solution

Φ̃(z)S =
( z

R

)S
Φ(z)S = Ce−iP ·xz

d
2 J∆− d

2
(zM) ε(P )µ1µ2···µS ,

• We can identify the conformal dimension:

∆ =
1
2
(
d +

√
(d− 2S)2 + 4µ2R2

)
.

• Normalization:

Rd−2S−1
∫ Λ−1

QCD

0

dz

zd−2S−1
Φ2

S(z) = 1.
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Baryons in 
Ads/CFT

 Baryons in “bottom-up”  approach to holographic QCD: 
{ GdT and SJB (2004)}.
 
 “Top-down” Sakai-Sugimoto model: 
{ Hong, Rho, Yee and Yi (2007); 
Hata, Sakai,Sugimoto, Yamato (2007)}.
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Baryons in 
Ads/CFT

2 Fermionic Modes

From Nick Evans

• Baryons Spectrum in ”bottom-up” holographic QCD

GdT and Brodsky: hep-th/0409074, hep-th/0501022.

• Conformal metric x! = (xµ, z):

ds2 = g!mdx!dxm

=
R2

z2
(ηµνdxµdxν − dz2).

• Action for massive fermionic modes on AdSd+1:

S[Ψ,Ψ] =
∫

dd+1x
√

g Ψ(x, z)
(
iΓ!D! − µ

)
Ψ(x, z).

• Equation of motion:
(
iΓ!D! − µ

)
Ψ(x, z) = 0

[
i

(
zη!mΓ!∂m +

d

2
Γz

)
+ µR

]
Ψ(x!) = 0.

Helmholtz Institut, Bonn, Oct 16, 2007 Page 20
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• Conformal metric x! = (xµ, z):

ds2 = g!mdx!dxm

=
R2

z2
(ηµνdxµdxν − dz2).

• Action for massive fermionic modes on AdSd+1:

S[Ψ,Ψ] =
∫

dd+1x
√

g Ψ(x, z)
(
iΓ!D! − µ

)
Ψ(x, z).

• Equation of motion:
(
iΓ!D! − µ

)
Ψ(x, z) = 0

[
i

(
zη!mΓ!∂m +

d

2
Γz

)
+ µR

]
Ψ(x!) = 0.

Helmholtz Institut, Bonn, Oct 16, 2007 Page 20
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Baryons
Holographic Light-Front Integrable Form and Spectrum

• In the conformal limit fermionic spin-1
2 modes ψ(ζ) and spin-3

2 modes ψµ(ζ)
are two-component spinor solutions of the Dirac light-front equation

αΠ(ζ)ψ(ζ) =Mψ(ζ),

where HLF = αΠ and the operator

ΠL(ζ) = −i

(
d

dζ
−

L + 1
2

ζ
γ5

)
,

and its adjoint Π†
L(ζ) satisfy the commutation relations

[
ΠL(ζ),Π†

L(ζ)
]

=
2L + 1

ζ2
γ5.

• Supersymmetric QM between bosonic and fermionic modes in AdS?

Exploring QCD, Cambridge, August 20-24, 2007 Page 47

97



 
 Stan Brodsky,  SLACAdS/QCDBNL

November 20, 2007 98

• Note: in the Weyl representation (iα = γ5β)

iα =



 0 I

−I 0



 , β =



0 I

I 0



 , γ5 =



I 0

0 −I



 .

• Baryon: twist-dimension 3 + L (ν = L + 1)

O3+L = ψD{!1 . . . D!qψD!q+1 . . . D!m}ψ, L =
m∑

i=1

&i.

• Solution to Dirac eigenvalue equation with UV matching boundary conditions

ψ(ζ) = C
√

ζ [JL+1(ζM)u+ + JL+2(ζM)u−] .

Baryonic modes propagating in AdS space have two components: orbital L and L + 1.

• Hadronic mass spectrum determined from IR boundary conditions

ψ± (ζ = 1/ΛQCD) = 0,

given by

M+
ν,k = βν,kΛQCD, M−

ν,k = βν+1,kΛQCD,

with a scale independent mass ratio.

Exploring QCD, Cambridge, August 20-24, 2007 Page 46
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I = 1/2 I = 3/2
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8694A14 

Fig: Light baryon orbital spectrum for ΛQCD = 0.25 GeV in the HW model. The 56 trajectory corresponds to L

even P = + states, and the 70 to L odd P = − states.

Exploring QCD, Cambridge, August 20-24, 2007 Page 48
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SU(6) S L Baryon State
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2
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3
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2
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2
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2
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1
2 1 ∆ 1

2
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2
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2 2 N 3

2
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2
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3
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2
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2
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2
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2
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2
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2

−

3
2 3 N 3

2

−
N 5

2

−
N 7

2
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2

−(1930) ∆ 7
2

−

56 1
2 4 N 7

2

+
N 9

2
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3
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2
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2

+ ∆ 9
2
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2

+(2420)

70 1
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2

−
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2
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3
2 5 N 7

2

−
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2

−
N 11

2

−
N 13

2

−

Exploring QCD, Cambridge, August 20-24, 2007 Page 47
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Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(αΠ(ζ)−M)ψ(ζ) = 0,

in terms of the matrix-valued operator Π

Πν(ζ) = −i

(
d

dζ
−

ν + 1
2

ζ
γ5 − κ2ζγ5

)
,

and its adjoint Π†, with commutation relations

[
Πν(ζ),Π†

ν(ζ)
]

=
(

2ν + 1
ζ2

− 2κ2

)
γ5.

• Solutions to the Dirac equation

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2),

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2).

• Eigenvalues

M2 = 4κ2(n + ν + 1).

Exploring QCD, Cambridge, August 20-24, 2007 Page 49
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• Baryon: twist-dimension 3 + L (ν = L + 1)

O3+L = ψD{!1 . . . D!qψD!q+1 . . . D!m}ψ, L =
m∑

i=1

#i.

• Define the zero point energy (identical as in the meson case) M2 →M2 − 4κ2:

M2 = 4κ2(n + L + 1).

Proton Regge Trajectory κ = 0.49GeV

Exploring QCD, Cambridge, August 20-24, 2007 Page 51
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

∫
dζ J(Q, ζ)|ψ+(ζ)|2,

F−(Q2) = g−

∫
dζ J(Q, ζ)|ψ−(ζ)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(ζ) and ψ−(ζ) correspond

to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

∫
dζ J(Q, ζ)|ψ+(ζ)|2,

Fn
1 (Q2) = −1

3

∫
dζ J(Q, ζ)

[
|ψ+(ζ)|2 − |ψ−(ζ)|2

]
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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• Scaling behavior for large Q2: Q4F p
1 (Q2)→ constant Proton τ = 3

0

0.4

0.8

1.2

0 10 20 30

Q2  (GeV2)

Q
4
F

p 1
 (

Q
2
) 

(G
e

V
4
)

9-2007

8757A2

SW model predictions for κ = 0.424 GeV. Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Helmholtz Institut, Bonn, Oct 16, 2007 Page 29
104



 
 Stan Brodsky,  SLACAdS/QCDBNL

November 20, 2007

Dirac Neutron Form Factor

(Valence Approximation)

Q4Fn
1 (Q2) [GeV4]

1 2 3 4 5 6
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Q2 [GeV2]

Prediction for Q4Fn
1 (Q2) for ΛQCD = 0.21 GeV in the hard wall approximation. Data analysis from

Diehl (2005).

CAQCD, Minneapolis, May 11-14, 2006 Page 29105

Truncated Space Confinement
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• Scaling behavior for large Q2: Q4Fn
1 (Q2)→ constant Neutron τ = 3

0

-0.1

-0.2

-0.3

-0.40 10 20 30
Q2  (GeV2)

Q4 F
n 1 (

Q2 ) 
(G

eV
4 )

9-2007
8757A1

SW model predictions for κ = 0.424 GeV. Data analysis from M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Helmholtz Institut, Bonn, Oct 16, 2007 Page 30
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0 1 2 3 4 5 6
0

0.5

1

1.5

2

Untitled-1 1

Spacelike Pauli Form Factor

F2(Q2)

Q2(GeV2)

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

Harmonic Oscillator 
Confinement

Normalized to anomalous 
moment

F p
2 (Q2)

κ = 0.49 GeV

G. de Teramond, sjb 

Preliminary
From overlap of L = 1 and L = 0 LFWFs
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• Predictions for hadronic spectra, light-front 
wavefunctions, interactions

• Deduce meson and baryon  wavefunctions, 
distribution amplitude, structure function  from 
holographic constraint

• Identification of Orbital Angular Momentum  
Casimir for SO(2):  LF Rotations

• Extension to massive quarks

Holographic Connection 
between LF and AdS/CFT

108
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 3

+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

109
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AdS/CFT and Integrability

• L. Infeld, “On a new treatment of some 
eigenvalue problems”, Phys. Rev. 59, 737 (1941). 

• Generate  eigenvalues and eigenfunctions using 
Ladder Operators

• Apply to Covariant Light-Front Radial Dirac and 
Schrodinger Equations

110
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Algebraic Structure , Integrability and Stability Conditions (HW Model)

• If L2 > 0 the LF Hamiltonian, HLF , can be written as a bilinear form

HL
LF (ζ) = Π†

L(ζ)ΠL(ζ)

in terms of the operator

ΠL(ζ) = −i

(
d

dζ
−

L + 1
2

ζ

)
,

and its adjoint

Π†
L(ζ) = −i

(
d

dζ
+

L + 1
2

ζ

)
,

with commutation relations [
ΠL(ζ),Π†

L(ζ)
]

=
2L + 1

ζ2
.

• For L2 ≥ 0 the Hamiltonian is positive definite

〈φ
∣∣HL

LF

∣∣ φ〉 =
∫

dζ |ΠLφ(z)|2 ≥ 0

and thus M2 ≥ 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 18
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Ladder Construction of Orbital States

• Orbital excitations constructed by the L-th application of the raising operator

a†
L = −iΠL

on the ground state:

a†|L〉 = cL|L + 1〉.

• In the light-front ζ-representation

φL(ζ) = 〈ζ|L〉 = CL

√
ζ (−ζ)L

(
1
ζ

d

dζ

)L

J0(ζM)

= CL

√
ζJL (ζM) .

• The solutions φL are solutions of the light-front equation (L = 0,±1,±2, · · · )
[
− d2

dζ2
− 1− L2

4ζ2

]
φ(ζ) = M2φ(ζ),

• Mode spectrum from boundary conditions : φ (ζ = 1/ΛQCD) = 0.

• The effective wave equation in the two-dim transverse LF plane has the Casimir representation L2

corresponding to the SO(2) rotation group [The Casimir for SO(N) ∼ SN−1 is L(L + N − 2) ].

Exploring QCD, Cambridge, August 20-24, 2007 Page 20112
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Non-Conformal Extension of Algebraic Integrability (SW Model)

• Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce

smooth cutoff which depends on the profile of a dilaton background field ϕ(z).

• Consider the generator (short-distance Coulombic and long-distance linear potential)

ΠL(ζ) = −i

(
d

dζ
−

L + 1
2

ζ
− κ2ζ

)
,

and its adjoint

Π†
L(ζ) = −i

(
d

dζ
+

L + 1
2

ζ
+ κ2ζ

)
,

with commutation relations
[
ΠL(ζ),Π†

L(ζ)
]

=
2L + 1

ζ2
− 2κ2.

• The LF Hamiltonian

HLF = Π†
LΠL + C

is positive definite 〈φ|HLF |φ〉 ≥ 0 for L2 ≥ 0, and C ≥ −4κ2.

• Orbital and radial excited states are constructed from the ladder operators from the L = 0 state.

Exploring QCD, Cambridge, August 20-24, 2007 Page 25

Integrable !
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x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

gu→ γu

pp→ γX

E dσ
d3p

(pp→ γX) = F (θcm,xT )
p4
T

− d
dζ2 ≡

k2
⊥

x(1−x)

Conjecture for massive quarks

− d
dζ2 → − d

dζ2 + m2
a

x +
m2

b
1−x ≡

k2
⊥+m2

a
x +

k2
⊥+m2

b
1−x

LF Kinetic Energy in 
momentum space 

Holographic Variable

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

Assume LFWF is a dynamical function of the  
quark-antiquark invariant mass squared

− d

dζ2
→ − d

dζ2
+

m2
1

x
+

m2
2

1− x
≡ k2

⊥ + m2
1

x
+

k2
⊥ + m2

2

1− x

de Teramond, sjbm1

m2
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ψ(x,b⊥) =
cκ√

π

√
x(1− x) e

− 1
2κ2x(1−x)b2

⊥−
1

2κ2

»
m2

1
x −

m2
2

1−x

–

ψ(x,k⊥) =
4πc

κ
√

x(1− x)
e
− 1

2κ2

„
k2
⊥

x(1−x)+
m2

1
x +

m2
2

1−x

«

z → ζ → χ

χ2 = b2x(1− x) +
1
κ4

[
m2

1

x
+

m2
2

1− x
]

Result:  Soft-Wall LFWF  for massive constituents  

LF WF  in  impact space: soft-wall model 
with massive quarks 

+
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ü

J êY: m1 = 1.25 GeV, m2 = 0

In[13]:=

Plot3D@psi@x, b, 1.25, 1.25, 0.375D, 8x, 0.0001, 0.9999<,

8b, 0.0001, 25 <, PlotPoints Ø 35, ViewPoint Ø 81.2, 1.4, 0.3<,

AspectRatio Ø 1.1, PlotRange -> 880, 1<, 80, 20<, 80, 0.3<<D

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.1

0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Out[13]= Ü SurfaceGraphics Ü

AdS Heavy Quark Masses.nb 6

LFWF peaks at 

xi = m⊥iPn
j m⊥j

where
m⊥i =

√
m2 + k2

⊥

J/ψ

ma = mb = 1.25 GeV

x

ψJ/ψ(x, b)
b[GeV−1]

minimum of LF 
energy 

denominator 

κ = 0.375 GeV
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ü

D Meson: m1 = 0, m2 = 1.3 GeV

In[16]:=

Plot3D@psi@x, b, 0, 1.25, 0.375D, 8x, 0.0001, 0.9999<, 8b, 0.0001, 25 <, PlotPoints Ø 35,

ViewPoint Ø 81.2, 1.4, 0.3<, AspectRatio Ø 1.1, PlotRange -> 880, 1<, 80, 20<, 80, 0.3<<D
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b[GeV−1]

x

ψD(x, b)

mq = 0, mc = 1.3 GeVκ = 0.375 GeV
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b[GeV−1]

x

ü

B meson: m1 = 0, m2 = 4.0 GeV

In[25]:=

Plot3D@psi@x, b, 0, 4, 0.375D, 8x, 0.0001, 0.9999<, 8b, 0.0001, 25 <, PlotPoints Ø 35,

ViewPoint Ø 81.2, 1.4, 0.3<, AspectRatio Ø 1.1, PlotRange -> 880, 1<, 80, 20<, 80, 0.55<<D
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ψB(x, b)

κ = 0.375 GeV m1 = 0, m2 = 4.0 GeV

118



 
 Stan Brodsky,  SLACAdS/QCDBNL

November 20, 2007 119

x

b[GeV−1]

ü

U: m1 = 4.0 GeV, m2 = 4.0 GeV
CONSISTENT WITH ZERO!

In[23]:=

Plot3D@psi@x, b, 4.0, 4.0, 0.375D, 8x, 0.0001, 0.9999<, 8b, 0.0001, 25 <, PlotPoints Ø 35,

ViewPoint Ø 81.2, 1.4, 0.3<, AspectRatio Ø 1.1, PlotRange -> 880, 1<, 80, 20<, 80, 0.55<<D
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ψΥ(x, b)

ma = mb = 4.0 GeV

Υ

κ = 0.375 GeV
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ü

s
è
 s meson: m1 = 0.1 GeV, m2 = 0.1 GeV

In[8]:=

Plot3D@psi@x, b, 0.1, 0.1, 0.375D, 8x, 0.0001, 0.9999<, 8b, 0.0001, 25<, PlotPoints Ø 35,

ViewPoint Ø 81.2, 1.4, 0.3<, AspectRatio Ø 1.1, PlotRange Ø 880, 1<, 80, 20<, 80, 0.16<<D
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K meson: m1 = 0 , m2 = 0.1 GeV

In[10]:=

Plot3D@psi@x, b, 0, 0.1, 0.375D, 8x, 0.0001, 0.9999<, 8b, 0.0001, 25<, PlotPoints Ø 35,

ViewPoint Ø 81.2, 1.4, 0.3<, AspectRatio Ø 1.1, PlotRange Ø 880, 1<, 80, 20<, 80, 0.16<<D
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ψφ(x, b⊥)

m1 = m2 = 0.1 GeV m1 = 0, m2 = 0.1 GeV

ψK(x, b⊥)

xx

b(GeV −1) b(GeV −1)

κ = 0.375 GeV
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GdT (10/24/2007): In the SW model and for massless quarks, meson modes

are described by the light-front wave equation

[
− d2

dζ2
+ V (ζ)

]
φ(ζ) =M2φ(ζ), (13)

with the potential V (ζ)

V (ζ) = −1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L− 1). (14)

For L = 0 the solution is

φ(ζ) = κ
√

2 ζ1/2e−κ2ζ2/2, (15)

with eigenvalueM2 = 0.

To find the effective interaction potential of the two-dimensional oscillator in pres-

ence of massive quarks, we substitute the oscillator term κ2ζ2 → κ2χ2. Consider first

the case of a 2 component meson with equal masses. We find from (10) the effective

potential:

V (ζ) = −1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L− 1) +

m2

x(1− x)
. (16)

Thus the prescription

V (ζ, x)massivequarks = V (ζ)maslessquarks +
n∑

i=1

m2
i

xi
, (17)

independent of the model.

3

LF Schrodinger Equation  for soft-wall model 
with massive quarks 

EigenvalueM2 shifted by [
∑

i mi]2

V (ζ) = −1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L− 1) +

m2
1

x
+

m2
2

1− x

z → ζ → χ

Consistency at κ = 0
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Use AdS/CFT orthonormal LFWFs 
as a basis for diagonalizing

the QCD LF Hamiltonian

• Good initial approximant

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations

Vary, Harinandrath, Maris, sjb

122

Pauli, Hornbostel, Hiller, 
McCartor, sjb
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2

⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Equation

Light-Front QCD

Use AdS/QCD  basis functions
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental frame-independent description of 
hadrons at amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances

124
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Quark Interchange
(Spin exchange in atom-

atom scattering)

Gluon Exchange
(Van der Waal -- 

Landshoff)
dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

d

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

sntot−2

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

sntot−2
M(t, u)interchange ∝ 1

ut2

M(s, t)gluonexchange ∝ sF (t)

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

MIT Bag Model (de Tar), large  NC,  (‘t Hooft), AdS/CFT
 all predict dominance of quark interchange:

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

s2

CIM: Blankenbecler, Gunion, sjb

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

s2
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AdS/CFT explains why  
quark interchange is 

dominant 
interaction at high 
momentum transfer 

in exclusive reactions

Non-linear Regge behavior:

αR(t)→ −1

z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

126

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

Quark Interchange
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Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Quarks travel freely within cavity as long as
separation z < z0 = 1

ΛQCD

LFWFs obey conformal symmetry producing
quark counting rules.
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S.J. Brodsky et al. / Nuclear Physics B 596 (2001) 99–124 103

Fig. 3. Light-cone time-ordered contributions to deeply virtual Compton scattering. Only the

contributions of leading power in 1/Q are illustrated. These contributions illustrate the factorization

property of the leading twist amplitude.

see Fig. 3. We specify the frame by choosing a convenient parametrization of the light-cone

coordinates for the initial and final proton:

P =
(

P+, !0⊥,
M2

P+

)
, (3)

P ′ =
(

(1− ζ )P+,− !∆⊥,
M2 + !∆2

⊥
(1− ζ )P+

)
, (4)

whereM is the proton mass. We use the component notation V = (V +, !V⊥,V −), and our

metric is specified by V ± = V 0±V z and V 2 = V +V − − !V 2
⊥. The four-momentum transfer

from the target is

∆ = P − P ′ =
(

ζP+, !∆⊥,
t + !∆2

⊥
ζP+

)
, (5)

where t = ∆2. In addition, overall energy–momentum conservation requires ∆− =
P− − P ′−, which connects !∆2

⊥, ζ , and t according to

t = 2P · ∆ = −ζ 2M2 + !∆2
⊥

1− ζ
. (6)

As in the case of space-like form factors, it is convenient to choose a frame where the

incident space-like photon carries q+ = 0 so that q2 = −Q2 = −!q 2⊥:

Nuclear Physics B 596 (2001) 99–124

www.elsevier.nl/locate/npe

Light-cone wavefunction representation of deeply
virtual Compton scattering !

Stanley J. Brodsky a, Markus Diehl a,1, Dae Sung Hwang b

a Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA
b Department of Physics, Sejong University, Seoul 143-747, South Korea

Received 25 September 2000; accepted 22 November 2000

Abstract

We give a complete representation of virtual Compton scattering γ ∗p → γp at large initial photon

virtuality Q2 and small momentum transfer squared t in terms of the light-cone wavefunctions of

the target proton. We verify the identities between the skewed parton distributions H(x, ζ, t) and

E(x, ζ, t) which appear in deeply virtual Compton scattering and the corresponding integrands of

the Dirac and Pauli form factors F1(t) and F2(t) and the gravitational form factors Aq(t) and Bq(t)

for each quark and anti-quark constituent. We illustrate the general formalism for the case of deeply

virtual Compton scattering on the quantum fluctuations of a fermion in quantum electrodynamics at

one loop. ! 2001 Elsevier Science B.V. All rights reserved.

PACS: 12.20.-m; 12.39.Ki; 13.40.Gp; 13.60.Fz

1. Introduction

Virtual Compton scattering γ ∗p → γp (see Fig. 1) has extraordinary sensitivity to

fundamental features of the proton’s structure. Particular interest has been raised by the

description of this process in the limit of large initial photon virtuality Q2 = −q2 [1–5].

Even though the final state photon is on-shell, one finds that the deeply virtual process

probes the elementary quark structure of the proton near the light-cone as an effective

local current, or in other words, that QCD factorization applies [3,6,7].

In contrast to deep inelastic scattering, which measures only the absorptive part of

the forward virtual Compton amplitude, ImTγ ∗p→γ ∗p , deeply virtual Compton scattering

!Work partially supported by the Department of Energy, contract DE-AC03-76SF00515.

E-mail addresses: sjbth@slac.stanford.edu (S.J. Brodsky), markus.diehl@desy.de (M. Diehl),

dshwang@kunja.sejong.ac.kr (D.S. Hwang).
1 Supported by the Feodor Lynen Program of the Alexander von Humboldt Foundation.

0550-3213/01/$ – see front matter ! 2001 Elsevier Science B.V. All rights reserved.

PII: S0550-3213(00)00695-7
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

N=3 VALENCE QUARK ⇒ Light-cone Constituent quark model

N=5 VALENCE QUARK + QUARK SEA ⇒ Meson-Cloud model

Diehl, Hwang, sjb,  NPB596, 2001

132

DVCS/GPD

132



 
 Stan Brodsky,  SLACAdS/QCDBNL

November 20, 2007

S.J. Brodsky et al. / Nuclear Physics B 596 (2001) 99–124 111

encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting from the

Fock state representation for both the incoming and outgoing proton, using the boost

properties of the light-cone wavefunctions, and evaluating the matrix elements of the

currents for a quark target. One can also directly evaluate the non-local current matrix

elements (16) in the same framework. In the following we will concentrate on the

generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.

For the n → n diagonal term (∆n = 0), the relevant current matrix element at quark

level is
∫
dy−

8π
eixP+y−/2

〈
1;x ′

1P
′+, $p′

⊥1,λ
′
1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣

y+=0,y⊥=0

=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
√
1− ζ

1− ζ
2

H(n→n)(x, ζ, t) − ζ 2

4
(
1− ζ

2

)√
1− ζ

E(n→n)(x, ζ, t)

=
(√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↑
(n)

(
xi, $k⊥i ,λi

)
, (39)

1√
1− ζ

∆1 − i∆2

2M
E(n→n)(x, ζ, t)

= (√
1− ζ

)2−n
∑

n,λi

∫ n∏

i=1

dxi d
2$k⊥i

16π3
16π3δ

(

1−
n∑

j=1
xj

)

δ(2)

(
n∑

j=1
$k⊥j

)

× δ(x − x1)ψ
↑∗
(n)

(
x ′
i ,

$k′
⊥i ,λi

)
ψ

↓
(n)

(
xi, $k⊥i ,λi

)
, (40)

where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′

⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′

⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′

⊥i = $0⊥. In Eqs. (39) and (40) one has to
sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.
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Example of LFWF representation 
of GPDs  (n => n)

Diehl,Hwang, sjb
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FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(

1
2
mxBx

−)

(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡
qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.
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FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑

i=1
xi = 1Remarkable new insights from AdS/CFT, the duality between    

conformal field theory and  Anti-de Sitter Space 

Invariant under boosts.   Independent of Pµ
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes, 
distribution amplitudes, direct subprocesses, 
hadronization.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect
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Some Applications of Light-Front Wavefunctions

• Exact formulae for form factors, quark and gluon distributions; 
vanishing anomalous gravitational moment; edm connection to anm

• Deeply Virtual Compton Scattering, generalized parton distributions, 
angular momentum sum rules

• Exclusive weak decay amplitudes

• Single spin asymmetries: Role if ISI and FSI

• Factorization theorems, DGLAP, BFKL, ERBL Evolution

• Quark interchange amplitude

• Relation of spin, momentum, and other distributions to  physics of 
the hadron itself.
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• AdS/CFT:  Duality between string theory in  Anti-de 
Sitter Space and  Conformal Field Theory

• New Way to Implement Conformal Symmetry

• Holographic Model: Conformal Symmetry at Short 
Distances, Confinement at large distances

• Remarkable predictions for hadronic spectra, 
wavefunctions, interactions

• AdS/CFT provides novel insights into the quark 
structure of hadrons

New Perspectives on QCD 
Phenomena from AdS/CFT
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A Few References: Bottom-up-Approach

• Derivation of dimensional counting rules of hard exclusive glueball scattering in AdS/CFT:

Polchinski and Strassler, hep-th/0109174.

• Deep inelastic scattering in AdS/CFT:

Polchinski and Strassler, hep-th/0209211.

• Unified description of the soft and hard pomeron in AdS/CFT:

Brower, Polchinski, Strassler and Tan, hep-th/0603115.

• Hadron couplings and form factors in AdS/CFT:

Hong, Yoon and Strassler, hep-th/0409118.

• Low lying meson spectra, chiral symmetry breaking and hadron couplings in AdS/QCD (Emphasis on

axial and vector currents)

Erlich, Katz, Son and Stephanov, hep-ph/0501128,

Da Rold and Pomarol, hep-ph/0501218, hep-ph/0510268.

Helmholtz Institut, Bonn, Oct 16, 2007 Page 31
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AdS/QCD G. F. de Téramond

• Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez,

hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower,

Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

• D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos,

Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erd-

menger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201;

Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnen-

schein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera,

hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219;

Casero, Paredes and Sonnenschein, hep-th/0510110.

• Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma (η/s = 1/4π):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 . . .

Caltech High Energy Seminar, Feb 6, 2006 Page 7

142
142



 
 Stan Brodsky,  SLACAdS/QCDBNL

November 20, 2007 143

• Counting rules, low lying meson and baryon spectra and form factors in AdS/CFT, holographic light

front representation and mapping of string amplitudes to light-front wavefunctions, integrability and

stability of AdS/CFT equations (Emphasis on hadronic quark constituents)

Brodsky and GdT, hep-th/0310227, hep-th/0409074, hep-th/0501022, hep-ph/0602252, 0707.3859

[hep-ph], 0709.2072 [hep-ph].

Thanks !
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