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Roy A. LaceyRoy A. Lacey

New Prospects for locating the QCD Critical 
End Point (CEP) at RHIC
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A Central Question for the QCD Lab!  A Central Question for the QCD Lab!  

The location of the critical End point and the phase 
boundaries are fundamental to the QCD phase diagram !
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Theoretical guidance Theoretical guidance 

for the CEPfor the CEP

Theoretical Guidance ?Theoretical Guidance ?

Any search for the CEPAny search for the CEP requires investigationsrequires investigations

over a broad range of over a broad range of µµ & T.& T.
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For the first time (at last) we 
have access to the full range

Of µ and T.
(via Energy scans at 
RHIC, SPS & FAIR)
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This is a necessary 
requirement for locating

the CEP

1) The Crossover Transition to the 
QGP is made clear at RHIC

• Space-time measurements

• Flow Measurements

• Jet Quenching 

Better News !Better News !

2) The viscosity to entropy ratio 
offers a new dynamical probe for 
the CEP

• Contrasts  Stationary State   
variables
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QGP and
hydrodynamic expansion

hadronization

The Role of The Role of FemtoscopyFemtoscopy

Are source Imaging measurements Are source Imaging measurements 

consistent with the crossover consistent with the crossover 

transition ?transition ?

A Cross Over strongly affects A Cross Over strongly affects 

the Spacethe Space--time Dynamicstime Dynamics

Theory indicate a crossover transitionTheory indicate a crossover transition

The spaceThe space--time extent (Source time extent (Source 

Image) can lend crucial insightsImage) can lend crucial insights

Puzzle ?
Life Time measurements

As a probe for the transition

Life Time measurementsLife Time measurements

As a probe for the transitionAs a probe for the transition
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Set Rx=Ry=Rz=4 fm, τf/o=10 fm/c, T=175 MeV, f=0.56

Dave Brown Dave Brown 

WPCF WPCF -- 20052005
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Source Imaging gives access to important spaceSource Imaging gives access to important space--time information time information 

which is inaccessible via “traditional approach”which is inaccessible via “traditional approach”

Why source Imaging?Why source Imaging?
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Direct Fit

Vary S(rj) to minimize

Reliable measurement of the fullReliable measurement of the full

1D Source Function ! 1D Source Function ! 
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Source Imaging Methodology (3D)Source Imaging Methodology (3D)Source Imaging Methodology (3D)
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Reliable measurement of the full Source Function in 3D ! Reliable measurement of the full Source Function in 3D ! 

Substitute (2) and (3) into (1)Substitute (2) and (3) into (1)

The 3D integral equation is reduced to a set of 1D relations for

different l coefficients ���� moments
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Correlation MomentsCorrelation Moments
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Robust Experimental Source Functions obtained from Robust Experimental Source Functions obtained from 
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PHENIX DataPHENIX DataPHENIX Data
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l > 6 is negligible
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Source Function Comparison to Models Give robust life time Source Function Comparison to Models Give robust life time 

estimates estimates �������� Consistent with Crossover transitionConsistent with Crossover transition

Therminator:
A.Kisiel et al. Comput.Phys.Commun.174, 669 (2006)

Thermal model with Bjorken longitudinal  

expansion and transverse Flow

• Spectra & yields constrain thermal properties 

• Transverse radius ρmax : controls 

transverse extent

• Breakup time in fluid element rest frame, 

: controls longitudinal extent

• Emission duration     : controls tails in 

long and out directions 

• a controls x-t correlations 
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The transition is Not  a Strong 
First order Phase Transition?

The transition is Not  a Strong The transition is Not  a Strong 

First order Phase Transition?First order Phase Transition?
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QM-2008QMQM--20082008

τ
τ∆

Poster 189

Mikolaj Chojnacki, Wojciech Florkowski, 

Wojciech Broniowski, Adam Kisiel

arXiv:0712.0947[nucl-th]
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Substantial elliptic flow signals should be present for a varietSubstantial elliptic flow signals should be present for a variety of particle y of particle 

species   species   �������� �������� Constraints for sound speed and viscosityConstraints for sound speed and viscosity
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initial state

pre-equilibrium

QGP and
hydrodynamic 
expansion

hadronization

hadronic phase
and freeze-out

Courtesy S. BassCourtesy S. Bass

We hold these truths to be self evident !We hold these truths to be self evident !

Scaling for identified hadrons

Scaling for Heavy Quark

Scaling for Phi Mesons

Universal Scaling
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F. Karsch, hep-lat/0601013

Saturation of Elliptic flow consistent with a  Saturation of Elliptic flow consistent with a  
soft EOS associated with Crossoversoft EOS associated with Crossover

The expected saturation of v2

Is observed 

The expected saturation of vThe expected saturation of v22

Is observed Is observed 

Phys.Rev.Lett.94:232302,2005 ( )2 Pc ε
∂=

∂
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Model Model 

ComparisonComparison

Partonic Fluid Flow 
Is near Perfect

Partonic Fluid Flow Partonic Fluid Flow 

Is near PerfectIs near Perfect

11--2 X the conjectured lower bound2 X the conjectured lower bound~
s

η

Lacey et al. PRL 98:092301
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initial state

pre-equilibrium

QGP and
hydrodynamic expansion

hadronization

hadronic phase
and freeze-out

Courtesy S. BassCourtesy S. Bass

A Crossover transition to the A Crossover transition to the 

strongly coupled thermalized strongly coupled thermalized 

QGP occurs at RHICQGP occurs at RHIC
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We hold these truths to be self evident !We hold these truths to be self evident !
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Transport CoefficientTransport CoefficientTransport Coefficient

Thermalization facilitated by 2Thermalization facilitated by 2��������3 processes3 processes

C. Greiner et al
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Small viscosity results in
large suppression

Small viscosity results inSmall viscosity results in

large suppressionlarge suppression

An estimate of the scattering powerAn estimate of the scattering power
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QCD Sonic BoomQCD Sonic Boom

Same-Side Jet

High pT

trigger

*φ∆
*θ

Gives sound speed directly;  Sets upper limit on viscosity.Gives sound speed directly;  Sets upper limit on viscosity.

Mθ

( )cos
M s

cθ =

Setting an upper limit on 
The viscosity

Setting an upper limit on Setting an upper limit on 

The viscosityThe viscosity
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Same-Side Jet

Away-Side Jet

*φ∆

High pT

trigger

Assoc. 

pTs
*θ∆

(2+1) processes efficiently removed via two(2+1) processes efficiently removed via two--event mixing event mixing 

to obtain true three particle correlationsto obtain true three particle correlations

Deflected jet Mach Cone
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Validation test of the use of two event mixing to remove  2+1 processes
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Data

Simulated 
Deflected jet

Simulated 
Mach Cone

The data validates the presence of a  Mach Cone awayThe data validates the presence of a  Mach Cone away--side jet side jet 

Total 3PC jet correlations

True 3PC jet correlations

QCD Sonic Boom?QCD Sonic Boom?QCD Sonic Boom?
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Fermionic Atoms

Lacey et al. Phys.Rev.Lett.98:092301

Nonaka et al. Curves to guide the eye

LowLow Suggest trajectories close to the critical point ? Suggest trajectories close to the critical point ? 
s

η

hep-ph/0604138
hep-lat/0406009

~ 0.2
s

η

Hints of the CEP?Hints of the CEP?Hints of the CEP?

B
µ
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Nonaka et al.

is a potent signal for the CEP                             is a potent signal for the CEP                             
s

η

How to get there?How to get there?How to get there?
Lacey et al.

arXiv:0708.3512 [nucl-ex]
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are a potent signals for the CEP                        are a potent signals for the CEP                        &
s s

η ξ

How to find the CEP?How to find the CEP?How to find the CEP?

First estimate   T ~ 165-170  µ ~ 120-150 MeV
Need two energies immediately

Meyer

Kharzeev-Tuchin


