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Outline

1. Viscosity of Heavy Ion Collisions

2. Remarks about relativistic viscous hydro

3. Solve viscous hydro in 2+1 dimensions with Bjorken symmetry.

4. Show the important effects for Heavy Ion Collisions

5. Discuss Limitations



Observation:

x

y

b
φ

There is a large momentum anisotropy:

v2 ≡
〈px〉2 − 〈py〉2

〈px〉2 + 〈py〉2
≈ 20%

Interpretation

• The medium responds as a fluid to differences in X and Y pressure gradients

• Hydrodynamic models work well enough.

Is the system Large enough? Does it live Long enough for hydro?



How Long and Large is Long/Large Enough ?

• Need the mean free path times expansion rate less than one

`m.f.p. × Expansion Rate � 1



How Long and Large is Enough ?

• Quick estimate of the mean free path:

`m.f.p ≡
1

nσ
=

1
n︸︷︷︸
∼T 3

× σ︸︷︷︸
α2

s/T 2

∼ 1
α2

sT

2

• So the Figure of Merit:

1/α2
sT︷ ︸︸ ︷

`m.f.p. ×
1/τ︷ ︸︸ ︷

expansion rate � 1
1
α2

s︸︷︷︸
Liquid Parameter

× 1
τT︸︷︷︸

Experimental Parameter

� 1



How Long and Large is Long/Large Enough ?

• What is the mean free path? `mfp ≡ η
e+p

• The mean free path should be less than the expansion rate 1
τ :

η

e + p︸ ︷︷ ︸
`mfp

1
τ

� 1

• Then using the relation: (e + p) = sT .

η

s︸︷︷︸
Liquid parameter

× 1
τT︸︷︷︸

Experimental parameter: ∼ 1

� 1

1. η/s needs to be small to have interacting QGP at RHIC.

2. Even if η/s is small, dissipative effects are significant!



Estimates of η/s for the initial stage of the QGP

1. Perturbative QCD – Kinetic Theory Arnold, Moore, Yaffe.

η ≈ 150 T 3 1
g4 . Based upon kinetic theory of quarks and gluons. Set αs → 1/2 and

mD → a reasonable value

(
`mfp

τ

)
≈ 0.3︸︷︷︸

η/s

1
τT︸︷︷︸
∼1

∣∣∣∣∣∣∣∣ `mfp ≈ 4 thermal wavelengths

2. Strongly Coupled conformal N=4 SYM – AdS/CFT Son, Starinets, Policastro

No kinetic theory exists.

(
`mfp

τ

)
=

1
4π︸︷︷︸
η/s

1
τT︸︷︷︸
∼1

∣∣∣∣∣∣∣∣ `mfp ≈ 1 thermal wavelength

With these sorts of numbers (not weakly coupled) expect some collectivity.



Comparison with the Boltzmann Equation: D. Molnar + M. Gyulassy

• Classical Massless Particles with Constant Cross Section

η

s
∼ 1

4π



Summary at time τ0

To ∼ 300 MeV and τ0 ∼ 1 fm

• Find: (
Γs

τ

)
≈ 0.1− 0.4

How does Γs

τ
evolve?

• 1D Expansion – scales set by temperature.

• 3D Expansion – scales fixed.



How does Γs/τ evolve?
Bjorken Expansion

beam direction

• 1D Bjorken Expansion – scales set by temperature

– Temperature decreases T ∼ 1
τ1/3

Γs

τ
∼ #

τT
∼ #

1

τ 2/3

Viscous effects get steadily smaller



Viscous corrections to Ideal Hydrodynamics and Longitudinal Expansion

T ij = pδij + η (∂ivj + ∂jvi − 2
3
δij ∂lv

l)

For a Bjorken expansion we have: T zz
vis ∼ η∂zvz ∼ −η

τ

Tµν = Tµν
o + Tµν

vis

=


ε

p

p

p


+


0

2
3

η
τ

2
3

η
τ

−4
3

η
τ


• The Longitudinal Pressure is reduced by 4

3η/τ .

• The Transverse Pressure is increased by 2
3η/τ .

Expect pT spectra to be pushed out to larger pT In a Radially Symmetric way



How does Γs/τ evolve?

3τ
1V ~ 

• 3D Expansion – scales fixed

– Density decreases n ∼ 1
τ3

Γs

τ
∼ #

τnσo

∼ #
τ 2

σo

Viscous effects get rapidly larger



Solving the Relativistic Navier Stokes Equations RNSE

• The RNSE as written can not be solved. There are unstable modes which

propagate faster than the speed of light.

• Why? Because the stress RNSE tensor is not allowed time to change.

T ij
vis

∣∣∣
instantly

= η
(
∂ivj + ∂jvi − 2

3
δij∂iv

i
)

• Can make many models which relax to the RNSE.

T ij
vis

∣∣∣
ω→0

∼ η
(
∂ivj + ∂jvi − 2

3
δij∂iv

i
)

• In the regime of validity of hydrodynamics the models all agree with each

other and with RNSE.

Can solve these models



Relaxation Time Approximation

• Bjorken Expansion – Normal Viscous Hydro

de

dτ
= −e + T zz

τ
T zz

eq = p−

∂zuz︷︸︸︷
4
3

η

τ

• Bjorken Expansion – Relaxation Time Approximation

de

dτ
= −e + T zz

τ
and

dT zz

dτ
= −

(T zz − T zz
eq )

τR

– What are the appropriate initial conditions for this second equation?

Answer: T zz ' T zz
eq



Solution of Relaxation Time Equations

 (fm)τ
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Relaxation Time

Relaxation is practically the same as Navier Stokes

Made precise – L. Lindblom



Diffusion Equation

∂tn−D∇2n = 0

• Specifies the form of the spectral density at small k and ω

GR(ω, k) =
1

∂t −D∇2
=

1
−iω + Dk2

ω

ω)/ω (00
RIm G

2Dk

=⇒ D

ω

ω)/ω(ii
RIm G



Relaxation Time Approximation:

∂tn + ∂xj = 0

∂tj = −(j + D∇n)
τR

• Solve the system equations and find the retarded correlator

ImGR(ω)
ω

=
D

π

1
1 + (ωτR)2

D

ω

ω)/ω(ii
RIm G

Rτ~1/



Spectral weight for a free theory:∫
e+iωt−ik·x

〈
[J i(x, t)J i(0, 0)]

〉

p

<

>

k-p

k
µν



Free Spectral Function:

ρ(ω) =
Nc

8π2
ω2

√
1− 4M2

ω2

(
2 +

4M2

ω2

)
︸ ︷︷ ︸

Vacuum

+χs
T

M
ω δ(ω)︸ ︷︷ ︸

Thermal

ω

ω
) ω(χ Im 

2M

D

Dη~

• Interactions will smear the delta function:

δ(ω) → ηD

ω2 + η2
D

ηD =
T

MD

• The total integral under the delta function is constant:

χs
T

M︸︷︷︸
(Thermal velocity)2

=⇒ Independent of Interaction



Real Spectral Densities:

• Relaxation models are a one parameter ansatz for the spectral density at small

frequency which satisfy the f-Sum Rule

Cartoon of Weak Coupling
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Weak Coupling Sum Rules and Short Time Response

D

ω

ω)/ω(ii
RIm G

Rτ~1/

• f-Sum Rule at Weak Coupling∫
dω

ImGii
R(ω)
ω︸ ︷︷ ︸

Short Times

=
〈
v2
th

〉

• Substitute
GR(ω)

ω ∝ 1
1+(ωτR)2

D

τR︸︷︷︸
Short Times

=
〈
v2
th

〉



Use short and long time parameters:

∂tn + ∂xj = 0

∂tj = −(j + D∇n)
τR

• Long Time Parameters: D

• Short Time Parameters: D
τR

=
〈
v2
th

〉
• Results should (and will!) be insensitive to short time response



Shear Visocisty and Strong Coupling:

χ(k, ω) =
∫

e+iωt−k·x 〈[T xy(t), T xy(0)]〉

ω

ω
) ω(χ Im 

T2g

η

T
)ω(δ 5

e+ p

ω

ω
) ω(χ Im 

η

T
What happens at strong coupling?



Strong Coupling and the AdS/CFT Correspondence:

• A method to compute correlators of the stress tensor in N = 4 Super Yang Mills

when g2N →∞.

• N=4 has 6 Scalars + 1 Guage Boson = 4 Left handed fermions

• Following strongly Son, Starinets, and Policastro.

– They computed the shear viscosity, η
s = 1

4πT

– They left the spectral density for someone with a computer and interest.



N=4 Spectral Density
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• Absolutely no hint of structure. No hint of a Debye scale of any kind

• The spectral density oscillates arround the zero temperature result with

exponentially decreasing amplitude

• Lorentzian ansatz may be a poor choice.



Euclidean Correlator: Free and Strongly Interacting
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• If you use perturbation theory and do a reasonable job on the pressure – You might

trick yourself into thinking its true



Hydro Simulations



Model Equations (H.C. Ottigner 2001)

1. Imagine a tensor cij which relaxes quickly to ∂ivj + ∂jvi

∂tcij − (∂ivj + ∂jvi) =
c̄ij

τ0
+
〈cij〉
τ2

where c̄ij = (tr c) δij and 〈cij〉 = cij − 1
3 c̄ij

– For small τ0 and τ2 we have:

cij ≈ τ0δij ∂iv
i + τ2(∂ivj + ∂jvi −

2
3
δij∂lv

l)

2. Then the “effective” pressure for small strains is given by:

Tij ≈ p(δij − a1 cij)

3. Compare this to the canonical form:

Tij ≈ pδij − ζ∂iv
i − η(∂ivj + ∂jvi −

2
3
δij∂lv

l)

Can map, (τ0, τ2, a1) → (ζ, η, v2
th)



Running Viscous Hydro in Three Steps

1. Run the evolution and monitor the viscous terms

2. When the viscous term is about half of the pressure:

– The models disagree with each other.

– T ij is not asymptotic with∼ η(∂ivj + ∂jvi − 2
3
δij∂lv

l)

Freezeout is signaled by the equations.

3. Compute spectra:

– Viscous corrections to the spectra grow with pT

fo → fo + δf

Maximum pT is also signaled by the equations.



Bjorken Solution with transverse expansion: Step 1 (η/s = 0.2)
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• First the viscous case does less longitudinal work.

• Then the transverse velocity grows more rapidly because the transverse pressure is

larger.

• The larger transverse velocity then reduces the energy density more quickly than ideal

hydro.

Viscous corrections do NOT integrate to give an O(1) change to the flow.
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FIG. 2: (Color online) Contour plot of energy density per unit rapidity in the transverse plane.

The contour values working outward are: τ = 1: 15, 10, 5, 1, .1; τ = 3: 10, 5, 1, .1; τ = 6: 3, 2, 1,

0.5; τ = 9: 0.5, 0.375, 0.25 in units of GeV/fm2.

path is much smaller then the gradients of the physical fields (i.e. λmfp ! ∂µuµ). This
criteria is used in order to specify the freezeout condition.

Specifically, freezeout is signaled when

η

p
∂µuµ ∼ 1

2
(3.1)

The value of 1
2 can be considered as a parameter chosen to be smaller than one. The

point is that as the above quantity becomes large the Navier Stokes approximation is no
longer applicable and the simulation should freezeout. At this point one would need to
include further higher order corrections in the gradients or switch to a kinetic approach. To
understand the above combination we note:

12



Freezeout

• Freezeout when the expansion rate is too fast

τR∂µuµ ∼ 1

• The viscosity is related to the relaxation time

η

e
∼ v2

thτR p ∼ e v2
th

• So the freezeout cirterion is

η

p
∂µuµ ∼ 1



Monitor the viscous terms and compute freezeout: Step 2

• Contours where viscous terms become O(1)

η/s η
p∂µuµ χ

0.05 0.6 12.0

0.05 0.225 4.5

0.05 0.15 3.0

0.2 0.9 4.5

0.2 0.6 3.0

0.133 0.6 4.5

TABLE I: Freezeout parameters used throughout this work. For a given η/s the most physical

choice of freezeout parameter χ is selected such that (η/p)∂µuµ ≈ 0.6. However, if the viscosity

becomes so small (such as for η/s = 0.05) that the volume becomes unphysically large (see text for

discussion) we set χ = 4.5 as a maximum. These three physically motivated parameter sets are in

bold.

FIG. 5: (Color online) Contour plot of various freezeout surfaces for central Au-Au collisions. Left:

Surfaces from ideal hydrodynamics where the freezeout condition is set by the parameter χ=1.5, 3

and 4.5. Right: Corresponding viscous solution where η/s was fixed by the condition η
p∂µuµ = 0.6.

The thin solid black curve shows the contour set by η
p∂µuµ = 0.225 for comparison.

V. SPECTRA

A. Anisotropy

Before computing the differential spectrum we will compute the momentum anisotropy
as a function of time. The momentum anisotropy A2 (which differs from v2 by the placement
of averages) is defined as

A2 =
〈p2

x〉 − 〈p2
y〉

〈p2
x〉 + 〈p2

y〉
=

S11 − S22

S11 + S22
, (5.1)

14

The space-time volume where hydro applies depends strongly on η/s



Decoupling Freezout and the Viscosity

• Freezeout at constant χ.
η

p
∂µuµ =

η

s

4
T

∂µuµ︸ ︷︷ ︸
≡χ

• The freezeout surface is independent of η/s also works for the ideal case
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Elliptic Flow versus Time - No δf

α2 =

〈
p2

x − p2
y

〉
〈
p2

x + p2
y

〉 ≈ 2 v2
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Result without δf is insensitive to η/s (except through freezeout)



Elliptic Flow versus Time – with δf

• Corrections to thermal distribution function f0 → f0 + δf

– Must be proportional to strains

– Must be a scalar

– General form in rest frame and ansatz

δf = F (|p|)pipjπij =⇒ δf ∝ f0 pipjπij

– Can fix the constant

pδij + πij =
∫

d3p

(2π)3
pipj

Ep
(f0 + δf)

find

δf =
1

2(e + p)T 2
fo pipjπij



Elliptic Flow versus Time - with δf

α2 =

〈
p2

x − p2
y

〉
〈
p2

x + p2
y

〉 ≈ 2 v2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1  2  3  4  5  6  7  8  9  10

A
2

τ (fm/c)

∞
4.5

3

1.5

Ideal
η/s=0.2

η/s=0.05



Elliptic Flow as a function of viscosity and pT , η/s = 0.2
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breakdown of hydro

No delta f and Close to Ideal Curve

Gradients: Deviations signal
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Compare to η/s = 0.05
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Conclusions:

• Viscosity does not change the ideal hydrodynamic solution

much. Time is not very long.

• Viscosity signals the boundary of applicability of hydro

– Need η/s < 0.3 in order that hydro describe a significant

fraction of the collision space-time volume

• In order to obatin vvis
2 ≈ 2

3
videal

2 need η/s < 1/6

• Large ambiguities for η/s > 0.3


