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Outline
1. Viscosity of Heavy lon Collisions
2. Remarks about relativistic viscous hydro
3. Solve viscous hydro in 2+1 dimensions with Bjorken symmetry.
4. Show the important effects for Heavy lon Collisions

5. Discuss Limitations



Observation:

There is a large momentum anisotropy:

<pac>2 — <py>2
<px>2 + <py>2

Vo = ~ 20%

Interpretation

e The medium responds as a fluid to differences in X and Y pressure gradients
e Hydrodynamic models work well enough.

Is the system Large enough? Does it live Long enough for hydro?




How Long and Large is Long/Large Enough ?

e Need the mean free path times expansion rate less than one

m.fp. X Expansion Rate < 1



How Long and Large is Enough ?

e Quick estimate of the mean free path:
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How Long and Large is Long/Large Enough ?

e What is the mean free path? £, rp = e—?—p

1.

e The mean free path should be less than the expansion rate - :
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e Then using the relation: (e + p) = sT'.
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Liquid parameter  Experimental parameter: ~ 1

1. 17/s needs to be small to have interacting QGP at RHIC.

2. Even if 77/8 Is small, dissipative effects are significant!



Estimates of 77/ s for the initial stage of the QGP

1. Perturbative QCD - Kinetic Theory Arnold, Moore, Yaffe.
n ~ 150 T g%. Based upon kinetic theory of quarks and gluons. Set vy — 1/2 and

mp — areasonable value

Con fp 1
~ 0.3 — / ~ 4 thermal wavelengths
( T ~~ 1T mfp J
/e T
2. Strongly Coupled conformal N=4 SYM — AdS/CFT Son, Starinets, Policastro

No kinetic theory exists.

¢ 1 1
( w;_fp) _ yrlie lrmfp = 1 thermal wavelength
—
n/s ~1

With these sorts of numbers (not weakly coupled) expect some collectivity.



Comparison with the Boltzmann Equation:

D. Molnar + M. Gyulassy
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Summary at time 7

T, ~300Mev and 79~ 1fm

<E> ~0.1-04
-

e 1D Expansion — scales set by temperature.

e Find:

Ls evolve?

T

How does

e 3D Expansion — scales fixed.



How does ', /7 evolve? | |
Bjorken Expansion

il

bheam direction

e 1D Bjorken Expansion — scales set by temperature

— Temperature decreases I’ ~ —
-

T 7T 72/3
Viscous effects get steadily smaller



Viscous corrections to Ideal Hydrodynamics and Longitudinal Expansion
ij ij i,.J i 2 l
T = pd*” +n (0" + v — §5]81v)

For a Bjorken expansion we have: 122 ~ nd*v® ~ —1
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e The Longitudinal Pressure is reduced by %77/7‘.

e The Transverse Pressure is increased by %77/7'.

Expect pr spectra to be pushed out to larger p7 In a Radially Symmetric way



How does ['; /7 evolve?

V~
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e 3D Expansion — scales fixed

— Density decreases n ~ %
-

[, # T2
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Viscous effects get rapidly larger



Solving the Relativistic Navier Stokes Equations RNSE

® The RNSE as written can not be solved. There are unstable modes which

propagate faster than the speed of light.

e \Why? Because the stress RNSE tensor is not allowed time to change.

2} — (aw L i g(wawz)

instantly

e Can make many models which relax to the RNSE.

1J
ijs

-~ 1,7 Y X~ W
o 77(81} + 0w 35 &Lv)

e |n the regime of validity of hydrodynamics the models all agree with each
other and with RNSE.

Can solve these models



Relaxation Time Approximation

e Bjorken Expansion — Normal Viscous Hydro

I\

O-U
A~
de e+ 17 e _ 4 7
dr T e =P 3T

e Bjorken Expansion — Relaxation Time Approximation

de e + T# dT7 (1 = T%)
— = — and = —
dr T dr TR

— What are the appropriate initial conditions for this second equation?

Answer: 1% ~ T2



Solution of Relaxation Time Equations
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Relaxation is practically the same as Navier Stokes

Made precise — L. Lindblom



Diffusion Equation
(‘9,571 — DVQN =0

e Specifies the form of the spectral density at small £ and w

1 1

G k — —
R(w, k) 9, — DV2  —iw + Dk2
Im Gy (6)/0 Im G (w)/w
— D
b
Dk?




Relaxation Time Approximation:

on+0zg = 0
(1 + DVn)

TR

O = —

e Solve the system equations and find the retarded correlator

ImGR(w) B D 1

W w1+ (wTR)?

Im Giy(w)/w

~1t, w



Spectral weight for a free theory:

/ o iwt—ikox <[Ji(x, t).J'(0, 0)]>

k-p




Free Spectral Function:

N AM? AM? T
plw) = wQ\/l— <2—|— ) +xs— wo(w)
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e Interactions will smear the delta function:
"D T
O(w) — = ——
W)= e =MD
e The total integral under the delta function is constant:
T |
Xs Vi — Independent of Interaction
—~—~

(Thermal velocity)?



Real Spectral Densities:

e Relaxation models are a one parameter ansatz for the spectral density at small

frequency which satisfy the f-Sum Rule

Cartoon of Weak Coupling
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Weak Coupling Sum Rules and Short Time Response

e f-Sum Rule at Weak Coupling

Im G(w)/w y
ImG% (w
/ dw R( ) = <v1;2h>
N\ w _J
Short Times
e Substitute GRT(“’) x +($TR)2
D 2
- — v
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Short Times



Use short and long time parameters:

(j + DVn)
TR

O = —

e Long Time Parameters: D

e Short Time Parameters: D <U1;2h>
TR

e Results should (and will') be insensitive to short time response



Shear Visocisty and Strong Coupling:

X(kw) = [ et e ), 7o o))
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What happens at strong coupling?



Strong Coupling and the AdS/CFT Correspondence:

e A method to compute correlators of the stress tensor in /N = 4 Super Yang Mills

when g?N — 0.
e N=4 has 6 Scalars + 1 Guage Boson = 4 Left handed fermions

e Following strongly Son, Starinets, and Policastro.

— They computed the shear viscosity, 2 = —471T

— They left the spectral density for someone with a computer and interest.



N=4 Spectral Density
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e Absolutely no hint of structure. No hint of a Debye scale of any kind

® The spectral density oscillates arround the zero temperature result with

exponentially decreasing amplitude

e Lorentzian ansatz may be a poor choice.



Euclidean Correlator: Free and Strongly Interacting
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e |f you use perturbation theory and do a reasonable job on the pressure — You might

trick yourself into thinking its true



Hydro Simulations



Model Equations (H.C. Ottigner 2001)

1. Imagine a tensor ¢;; which relaxes quickly to J;v; + 0;v;
C;ij

awﬁ_(@w4”%w):§{4'%z>

where ¢;; = (trc) 0;; and <Cz'j> — Cij — %Eij

— For small 79 and 7 we have:
: 2
Cij = 7'057;]' o;v" + ’7'2(82"0]' + 8j?]i — §(5ijal?}l)
2. Then the “effective” pressure for small strains is given by:
Tij = p(0ij — ax cij)
3. Compare this to the canonical form:
1 2 [
Tij ~ p5ij — Caﬂ} — n(&;vj + aj?}@' — gdijﬁlv )

Can map, (79, T2, a1) — (C,n,vfh)



Running Viscous Hydro in Three Steps
1. Run the evolution and monitor the viscous terms

2. When the viscous term is about half of the pressure:
— The models disagree with each other.
— T is not asymptotic with ~ 1(0"v? 4+ dv' — 26 ')
Freezeout is signaled by the equations.

3. Compute spectra:

— Viscous corrections to the spectra grow with pr

fo— fo+0f

Maximum pr is also signaled by the equations.



Bjorken Solution with transverse expansion: Step 1 (77/8 = 0.2)
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e First the viscous case does less longitudinal work.

e Then the transverse velocity grows more rapidly because the transverse pressure is

larger.

e The larger transverse velocity then reduces the energy density more quickly than ideal

hydro.

Viscous corrections do NOT integrate to give an O(1) change to the flow.









Freezeout

e Freezeout when the expansion rate is too fast
TRQMUM ~ 1

® The viscosity is related to the relaxation time

n 2 2
ngthTR P ~ €Uy

® So the freezeout cirterion is

i
—0,ut ~ 1
pH



Monitor the viscous terms and compute freezeout: Step 2

e Contours where viscous terms become O(1)
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The space-time volume where hydro applies depends strongly on 77/3



Decoupling Freezout and the Viscosity

® Freezeout at constant X-

e The freezeout surface is independent of 77/ s also works for the ideal case
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Elliptic Flow versus Time - No 0 f
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Result without 0 f is insensitive to 77/8 (except through freezeout)



Elliptic Flow versus Time — with 0 f

e Corrections to thermal distribution function fo — fo 4+ 0 f
— Must be proportional to strains
— Must be a scalar

— General form in rest frame and ansatz
of = F(lp|)p'p’mi; = of o< fop'p mij

— Can fix the constant

ij o i
poY = [ S B o 61)
find
1 o
of = foD'P' i

2(e +p)T?



Elliptic Flow versus Time - with 0 f
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No delta f and Close to Ideal Curvt
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Compare to 77/8 —0.05
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Conclusions:

e Viscosity does not change the ideal hydrodynamic solution
much. Time is not very long.

e Viscosity signals the boundary of applicability of hydro
— Need 77/8 < 0.3 in order that hydro describe a significant

fraction of the collision space-time volume

videal need n/s < 1/6

e In order to obatin vy & %

e Large ambiguities for /s > 0.3



