Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

Rachid Nouicer

Brookhaven National Laboratory

XIIth Quark Confinement and the Hadron Spectrum

Thessaloniki, Greece August 29th to September 3rd, 2016

a passion for discovery

The RHIC Facility Today

Rachid Nouicer

Heavy Flavor: Ideal Probe of QCD Matter

Theoretical motivation

- Symmetry breaking
 - Higgs mass: electroweak symmetry breaking

→ current quark mass

- QCD mass: chiral symmetry breaking

→ constituent quark mass

 ❖ Charm and beauty quark masses are not affected by QCD vacuum
 → ideal probes to study QGP

*	Heavy quarks (cc̄, bb̄)
	- Bound states (J/ ψ , Y)

State	J/ψ	Xc	ψ'	r	Хь	Υ'	χ_b'	γ''
Mass (GeV)	3.10	3.53	3.68	9.46	9.99	10.02	10.36	10.36
ΔE (GeV)	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
Radius (fm)	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

- ◆ Due to their mass (m_Q >> T_{cri} , Λ_{QCD})
 → higher penetrating power
- ◆ Gluon fusion dominates
 → sensitive to initial state gluon distribution

M. Gyulassy and Z. Lin, Phys. Rev. C51 (1995) 2177

Measuring Heavy Flavor in PHENIX and STAR

Rachid Nouicer

Where does all the heavy flavor go?

Courtesy of Kai Schweda (SQM2016)

Motivation for Open Heavy Flavor Measurements

- Heavy quarks suppressed the same as light quarks, and they flow, but less.
- Collective behavior is apparent in e^{HF}; but it is lower than v₂ of π⁰ for p_T > 2 GeV/c.
- This contradicts models that assumed only inelastic (radiative) in-medium energy loss, which predicted that R_{AA}(HQ) > R_{AA}(light quark) due to "dead cone effect".

 Separating D and B meson contributions key for establishing mass hierarchy in understanding energy loss.

Nuclear modification factor

PHENIX Central Heavy Flavor Tracker (VTX)

Open Heavy Flavor with VTX in PHENIX

First Results from PHENIX VTX: b/c separation

Rachid Nouicer

PHENIX Forward Heavy Flavor Tracker (FVTX)

Rachid Nouicer

Open Heavy Flavor with FVTX in PHENIX

Results from FVTX: B-meson $\rightarrow J/\psi$ in p+p 510 GeV

PHENIX: p+p at 510 GeV compared to word data

Open Heavy Flavor with FVTX in PHENIX

Results from FVTX: B-meson ${\rightarrow}J/\psi~$ in Cu+Au at 200 GeV

Nuclear Modification factor Cu+Au at 200 GeV: R_{AA} (B->J/ ψ)

STAR Heavy Flavor Tracker (HFT)

Courtesy of Zhenyu Ye (STAR Collaboration)

• First application of Monolithic Active Pixel Sensor technology in collider experiments. DCA resolution <50 μ m for p_T= 750 MeV/c Kaon.

• Recorded about 3B Minimum Bias 200 GeV Au+Au events for D⁰, D^{\pm}, D_s

• Results presented today are based on partial 2014 MB data.

Open Heavy Flavor with HFT in STAR: D⁰ R_{AA} and v₂

• R_{AA}(D)>1 for p_T~1.5 GeV/c

Charm coalescence

 High p_T: significant suppression in central Au+Au collisions.

Strong charm-medium interaction

• $R_{AA}(D) \sim R_{AA}(\pi)$ at $p_T>4$ GeV/c

Similar suppression for light partons and charm quarks at high $\ensuremath{p_{\text{T}}}$

Significant v_2 for D's at RHIC

- Non-zero v_2 for p_T >2 GeV/c

Favors charm quark diffusion

We received a letter with title: "J/ ψ Suppression by Quark-Gluon Plasma Formation" By: T. Matsui (MIT, LNS), H. Satz (Bielefeld U. & Brookhaven) Published in: Phys. Lett. B178 (1986) 416 that:

Quarkonia!

- Color screening in dense medium can cause disassociation of the bound state
- Should see sequential melting of the different states
- Use quarkonia as a medium thermometer!

... Turns out it's not that simple!

- Many effects which modify the yield other than disassociation!
 - Regeneration
 - Nuclear shadowing
 - CNM energy loss
 - Nuclear breakup
 - Breakup with co-moving hadrons

Motivation for Quarkonia Measurements

Centrality dependence of the J/ ψ inclusive R_{AA} studied by PHENIX and ALICE at both central and forward rapidities.

ALICE results show weaker centrality dependence and smaller suppression for central events, may suggest a (re)combination scenario.

Rachid Nouicer

STAR Muon Telescope Detector (MTD)

L~14.2 nb⁻¹

• Precise timing info (~100 ps) for $p_T > 1.2$ GeV/c; muon online triggering and offline identification.

• Recorded 28 pb⁻¹, 120 pb⁻¹, 400 nb⁻¹ and 22 nb⁻¹ dimuon-triggered 500 GeV p+p, 200 GeV p+p, p+Au and Au+Au data for J/ψ and Y studies.

 Results presented today are based on 28 pb⁻¹ p+p 500 GeV (63% MTD) and 14.2 nb⁻¹ Au+Au 200 GeV data.

STAR: $J/\psi R_{AA}$ in Au+Au at 200 GeV

J/\u03c6 R_{AA} for p_T>0 GeV/c: RHIC is smaller than LHC -> more recombination at LHC
 J/\u03c6 R_{AA} for p_T>5 GeV/c: LHC is smaller than RHIC -> stronger dissociation at LHC
 Transport models with dissociation and recombination qualitatively describe data

PHENIX: Suppression of ψ ' in Central d+Au Collisions

ψ ' broken up in small systems: p+AI, p+Au and d+Au

Rachid Nouicer

Summary

Without Doubt RHIC is Amazing QCD Machine

 $\diamond\,$ Many Species, Many Energies, and High Luminosity and Stability

Open Heavy Flavor

♦ Au+Au at 200 GeV

- Electrons from bottom similarly suppressed to those from charm for $p_T > 4$ GeV/c
- Similar suppression of D mesons and light hadrons (at high- $p_T > 4$ GeV/c)

♦ Cu+Au at 200 GeV

- B-mesons $\rightarrow J/\psi$ at forward-rapidity are less suppressed than prompt J/ψ

> Quarkonia

♦ Small Systems p+Al, p+Au and d+Au

- ψ has larger suppression than J/ ψ at mid and backward rapidity
 - comover dissociation model agree qualitatively with data

Stay Tuned …!

♦ More statistic: decrease uncertainties, increase p_T reach, centrality separation
→ more surprises...

