from 27 June 2016 to 1 July 2016 UC Berkeley

Latest Results

Open Heavy Flavor and Quarkonia PHENIX Experiment at RHIC

Rachid Nouicer

for the PHENIX collaboration

RHIC Amazing QCD Machine: Many Species and Many Energies!

Run	Species	Total particle energy [GeV/nucleon]	total delivered Luminosity [μb ⁻¹]	Run	Species	Total particle energy [GeV/nucleon]	Total delivered luminosity [μb ⁻¹]
l (2000)	Au+Au Au+Au	56 130	< 0.001 20	IX (2009)	p+p +p	500 200	110x10 ⁻⁶ 114x10 ⁻⁶
II (2001/2002)	Au+Au Au+Au p+p	200 19.6 200	25.8 0.4 1.4x10 ⁻⁶	X (2010)	Au+Au Au+Au Au+Au Au+Au Au+Au	200 62.4 39 7.7 11.5	10.3x10 ⁻³ 544 206 4.23 7.8
III (2003)	d+Au p+p	200 200	73x10 ⁻³ 5.5x10 ⁻⁶	XI (2011)	p+p Au+Au Au+Au Au+Au	500 19.6 200 27	166x10 ⁻⁶ 33.2 9.79x10 ⁻³ 63.1
IV(2004)	Au+Au Au+Au p+p	200 62.4 200	3.53x10 ⁻³ 67 7.1x10 ⁻⁶	XII (2012)	p+p p+p U+U Cu+Au	200 510 193 200	74x10 ⁻⁶ 283x10 ⁻⁶ 736 27x10 ⁻³
V (2005)	Cu+Cu Cu+Cu Cu+Cu p+p p+p	200 62.4 22.4 200 410	42.1x10 ⁻³ 1.5x10 ⁻³ 0.02x10 ⁻³ 29.5x10 ⁻⁶ 0.1x10 ⁻⁶	XIII (2013)	p+p	510	1.04x10 ⁻⁹
				XIV (2014)	Au+Au Au+Au ³He+Au	14.6 200 200	44.2 43.9x10 ⁻³ 134x10 ⁻³
VI (2006)	p+p p+p	200 62.4	88.6x10 ⁻⁶ 1.05x10 ⁻⁶	XV (2015)	p+p p+Au p+Al	200 200 200	282x10 ⁻⁶ 1.27x10 ⁻⁶ 3.97x10 ⁻⁶
VII (2007)	Au+Au Au+Au	200 9.2	7.25x10 ⁻³ Small	XVI (2016)	Au+Au d+Au	200 200	46.1x10 ⁻³ 46.1x10 ⁻³
VIII (2008)	d+Au p+p Au+Au	200 200 9.6	437x10 ⁻³ 38.4x10 ⁻⁶ Small		d+Au d+Au d+Au Au+Au	62.4 19.6 39 200	44.0x10 ⁻³ 7.2x10 ⁻³ in progress

RHIC Amazing QCD Machine: Many Species and Many Energies!

RHIC energies, species combinations and luminosities (Run-1 to 16)

Heavy Flavor: Ideal Probe of QCD Matter

We study QCD matter (Hot vs Cold) through heavy flavor production:

1) Open Heavy Flavor

2) Quarkonia

System Size/ Collision Asymmetry

Centrality

Change the relative contributions of **Cold** and **Hot** nuclear matter effects

Suppression vs path length

Collision Energy

Change system energy density

Momentum

Hard collision dynamics

Rapidity

Probes different gluon (anti)shadowing

Heavy/Light

Mass ordering of suppression

Particle Species

Break-up, Temperature?

Each parameter probes different admixtures of nuclear modification

Heavy Flavor: Ideal Probe of QCD Matter

Theoretical motivation

- Symmetry breaking
 - Higgs mass: electroweak symmetry breaking
 - → current quark mass
 - QCD mass: chiral symmetry breaking
 - → constituent quark mass
- Charm and beauty quark masses are not affected by QCD vacuum
 - → ideal probes to study QGP

*	Heavy	quar	ks ((cc,	bb)
	_				

- Bound states (J/ψ, Y)

State	J/ψ	Xc	ψ'	Υ	Χь	γ'	χ_b'	Υ"
Mass (GeV)	3.10	3.53	3.68	9.46	9.99	10.02	10.36	10.36
ΔE (GeV)	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
Radius (fm)	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

- Due to their mass $(m_Q >> T_{cri}, \Lambda_{QCD})$
 - → higher penetrating power
- Gluon fusion dominates
 - → sensitive to initial state gluon distribution

M. Gyulassy and Z. Lin, Phys. Rev. C51 (1995) 2177

Measuring Heavy Flavor in PHENIX

PHENIX: optimized to measure leptons:

1) high rate capability 2) emphasis on mass resolution & particle ID 3) first level e&µ triggers

Mid-rapidity: J/ψ , $\Upsilon \rightarrow e^+ e^-$

- $|\eta|$ < 0.35, $\Delta \phi$ = 2x π /2, p > 0.2 GeV
- Drift and pad chamber for tracking
- Cerenkov detector (RICH) and calorimeter (EMCAL) electron ID
- Silicon Vertex Tracker (VTX)

Forward rapidity: J/ψ , $\Upsilon \rightarrow \mu^+ \mu^-$

- $-1.2 < |\eta| < 2.2, \ \Delta \phi = 2\pi, p > 2 \text{ GeV}$
- Muon Tracker reconstructs trajectories and determines momentum
- Muon magnets and Muon Identifier steel absorb hadrons, pion rejection
- Forward Silicon Vertex Tracker (FVTX)

What have we learned from Open Heavy Flavor?

The variety and precision of results keep expanding, revealing interesting features

Heavy Flavor Electrons

High-p_T

- Significant suppression
- Similar suppression of light hadrons and EHF (c+b): what about c→e and b→e?

Low-p_T

- Little suppression
- EHF less suppressed than light hadrons.
- Significant v₂, but less than light hadrons.

What have we learned from Open Heavy Flavor?

EHF: Au + Au vs. d+Au at 200 GeV

d+Au: no suppression observed over p_T

Baseline is no longer $R_{AA}=1$

Implies R_{AA} is more strongly suppressed for $p_T < 4!$

Need detailed calculations to propagate effects to Au+Au collisions!

Au + Au at 62.4 GeV

- In contrast to 200 GeV AuAu, the 62.4 GeV R_{AuAu} show clear enhancement
- Due to less energy loss? larger Cronin effects? or combination of those factors and other effects?

But: p + p comes from ISR. We need more p + p data at 62 GeV!

What have we learned from Open Heavy Flavor?

Single electrons e^{HF} vs single muons μ^{HF} Mid-rapidity vs forward rapidity

Suppression is stronger at forward rapidity than mid-rapidity- why?

- → Data in agreement withI. Vitev's prediction that accounts for:
- (1) for final state energy loss effects with his dissociation model
- (2) cold nuclear matter effects, such as nuclear shadowing and parton multiple scattering

Indication of Cold Nuclear Matter (CMN) effects at forward rapidity in Cu+Cu system at 200 GeV

c/b separation by secondary vertex

VTX detector

• VTX (2011):

- Midrapidity: |η | <1.2

- AuAu 200 GeV:

~ 60 μm DCAT resolution

- FVTX (2012):
- Forward rapidity 1.2 < $|\eta|$ < 2.2
- Improved muon momentum resolution & precise tracking

FVTX detector

First Results from PHENIX VTX: b/c separation

DCA_T Distributions: Backgrounds

 $1.50 < p_{_{\rm T}} < 2.00$

High-Multiplicity Bkg.

Data driven shape Tracks with large DCA_L

Mis-identified hadrons:

Data driven shape RICH Swap Method

Dalitz:

Monte Carlo shape With measured yield

Conversions:

Monte Carlo shape With Measured Pi0 yield ~75% rejected

Ke3:

Monte Carlo shape With measured yield

J/ψ->e+e-:

Monte Carlo shape With measured yield

First Results from PHENIX VTX: b/c separation

DCA_T Distributions: b/c separation

c->e:

Monte Carlo shape Normalization from unfolding

b->e:

Monte Carlo shape Normalization from unfolding

The charm and bottom yield predicted by the unfolding is consistent with electron measured DCA_{τ} distributions.

 $b \rightarrow e$

Total

Data

First Results from PHENIX VTX: b/c separation

Invariant yield compared to previous published results

The unfolding results are consistent with the previous published inclusive heavy flavor electron invariant yields.

First Results from PHENIX VTX: b/c separation

Invariant yield:

PHENIX unfolded D⁰ p_T spectra agrees within uncertainties with measurements from STAR.

First Results from PHENIX VTX: b/c separation

$$R_{AA}^{c \to e} = \frac{(1 - F_{\text{AuAu}})}{(1 - F_{pp})} R_{AA}^{\text{HF}}$$
$$R_{AA}^{b \to e} = \frac{F_{\text{AuAu}}}{F_{pp}} R_{AA}^{\text{HF}},$$

We see that around p_T < 4 GeV the electrons from bottom experience much less suppression than electrons from charm.

Stay Tuned:

- 2014 data set x10 better statistics than 2011
 - Decrease uncertainties
 - Increase p_⊤ reach
 - Centrality separation
- Good 2015 p+p and p+Au data sets

First Results from the PHENIX FVTX: $B \rightarrow J/\psi$

Two sources of background:

- Di-muon combinatorial
- FVTX-MuTr mismatches:
 Coming from incorrectly matching a
 MuTr track to the FVTX stand alone track.

Signal templates and backgrounds are fitted together to extract the $B\to J/\psi$ fraction.

First Results from the PHENIX FVTX: B \rightarrow J/ ψ

B→ J/ψ prompt J/ψ separation through DCA_R

- Prompt J/ ψ and B-> J/ ψ DCA_R template shapes, determined using MC simulations, were used in the fit.
- \bullet The sum of the DCA $_{\rm R}$ contributions agrees well with the data as shown in the bottom panel.

First Results from the PHENIX FVTX: B \rightarrow J/ ψ

B->J/ψ fraction

• $F_{B \to J/\psi}$ was determined for both the gold and copper going directions.

• Difference is attributed to a smaller suppression of B mesons relative to inclusive J/ψ at RHIC energies

First Results from the PHENIX FVTX: B \rightarrow J/ ψ B->J/ ψ fraction

What NEW on Quarkonia?

Quarkonia Results

What have we learned from

Colliding symmetric systems?

System and Energy Dependence

Quarkonia: What have we learned from colliding symmetric systems?

Bound Heavy Flavor: J/ψ R_{AA}

Au+Au at different energies

In Au+Au and at forward rapidity:

R_{AA} show similar suppression at different collision energies: 200, 62.4 and 39 GeV

Au+Au at 200 GeV mid- vs. forward rapidities

Significant J/ ψ suppression at midand forward rapditive regions is observed in central Au + Au collisions R_{AA} decreases with increasing N_{part}

Quarkonia: What have we learned from colliding symmetric systems?

Bound Heavy Flavor: J/ψ R_{AA}

System Size study: Cu+Cu, Au+Au and U +U \approx 200 GeV J/ ψ \rightarrow μ^+ μ^- at forward rapidity 1.2 < |y| < 2.2

System Size study: Cu+Au vs Au+Au at 200 GeV $J/\psi \rightarrow \mu^+ \mu^-$

Not much net effect on R_{AA} at forward rapidity from increasing system size of colliding nuclei!

Is this what we expected?

- Similar suppression in Cu+Au compared to Au+Au
- Forward (Cu-going) more suppressed than Backward → CNM effects?

What NEW on Quarkonia?

Quarkonia production in small systems

Explore the CNM effect via Charmonia

What NEW on Quarkonia?

Comparison between open and closed heavy flavor

In the most central collision:

- 1) R_{dA} of HF muon and J/ ψ are still consistent at forward rapidity
- 2) however, clearly different at backward rapidity
- 3) charm production is enhanced but J/ψ production is significantly suppressed due to nuclear breakup inside dense co-movers at backward rapidity

Quarkonia: Suppression of ψ' in central d+Au collisions

Quarkonia: ψ' at forward/backward in central collision

Run-15 p+Au \s = 200 GeV

PH ENIX preliminary -2.2 < y <-1.2 Au-going

NATIONAL LABORATORY

μ⁺μ⁻ mass (GeV/c²)

Backward: Au-going direction

Quarkonia: ψ' at forward/backward in central collision

ψ' broken up

- Qualitatively agrees with the co-mover dissociation model.
- Comparison with the QGP model work in progress.

 Similar relative suppression of ψ' at backward rapidity, but larger relative suppression of ψ' at forward rapidity at LHC

Summary

♦ Without Doubt RHIC is Amazing QCD Machine

♦ Many Species Many Energies, and High Luminosity and Stability

♦ Open Heavy Flavor

- \Rightarrow **Au+Au at 200 GeV:** electrons from bottom similarly suppressed to those from charm for p_T > 4 GeV/c, but less suppressed than charm for p_T < 4 GeV/c
- \Rightarrow **p+p at 510 GeV:** no center of mass energy dependence for low p_T (< 5 GeV/c) B-meson decayed J/ψ and excellent agreement with word data

♦ Quarkonia Measurements at Small System

- ψ' larger suppression than J/ψ at mid and backward rapidity
 - Qualitatively agrees with the co-mover dissociation model
- \diamond Similar relative suppression of ψ ' at backward rapidity, but larger relative suppression of ψ ' at forward rapidity at LHC

♦ Stay Tuned ...!

♦ More statistic: decrease uncertainties, increase p_T reach, centrality separation
 → more surprises...

Thank you

