DCM / ONCS Interface Functional Description

C.Y. Chi, E. Desmond, Chris Witzig, Bill Zajc

Original Document 	April 4, 1996

Last Updated 		June 3, 1996

ONCS TO DCM INTERFACE RESPONSIBILITIES

ONCS WILL PROVIDE CODE TO INITIATE STATE TRANSITIONS OF SUBSYSTEM COMPONENTS

ONCS WILL PROVIDE THE MECHANISM TO SEND AND RETRIEVE ALL SUBSYSTEM REQUIRED CODE AND DATA

ONCS WILL PROVIDE C OR C++ COMPATIBLE FUNCTION CALLS FOR SUBSYSTEM CONTROL AND ACCESS

SUBSYSTEM CONTROL AND ACCESS FUNCTIONS ARE EXPECTED TO BE TESTED IN A VxWorks ENVIRONMENT

SUBSYSTEM CONTROL AND ACCESS FUNCTIONS ARE EXPECTED TO BE DEVELOPED IN C OR C++

Cold Start Initialization Sequence

The scenario for a cold start is as follows. The DCM crate controller, which is the resident cpu controller of a VME crate is powered on. This loads the VxWorks kernel over the ethernet network. A startup script which is automatically executed loads server modules which control access to resident DCM devices. DCM device access code is also loaded at this time.

Before a run is started a request is sent to query the DCM controller about which modules currently exist and respond to the DCM controller. Unique Ids are to be returned for each unit found. A status value returns with a valid ID or a -1 is returned for a failure to respond.

When a run is started, configuration information is read from a file or configuration database. This configuration information identifies the DCM modules which are required for the run. The configuration file identifies required DCM modules by ascii readable names. ONCS software will provide the mechanisms to create and initialize the software components which will provide controll and status access to the DAQ hardware components. These are expected to reside in the DAQ VME crate controller.

At the beginning of a run, the run client sends initialize, download and run enable commands to the DCM controller along with the data required for each of these steps. A server in the DCM controller in turn executes functions or methods which carry out the individual initialization process on individual DCM components. The startup steps are summarized below.

boot DCM Controller VxWorks kernel via network

download DCM server code

download DCM hardware device control and access functions

issue ONCS hardware query for component module Ids

download run configuration information to DCM controller and create run specific software components

sequence through DCM hardware initialization and data download

DCM Configuration Specifications

A single granule may have greater than one DCM crate controller

Multiple DCM subsystems may occupy the same physical VME crate. Thus the DCM controller for the MVD and TEC, for example, may reside in the same physical crate.

The DCM crate controller must have support for local SCSI disk controller.

Each DCM board will have a software readable unique board ID

Each DCM module on the DCM board will have a unique software readable ID.

Each DCM board may have a single transfer DSP module.

DCM CONFIGURATION ISSUES

The relationship between the DCM modules and the state of other components in the system need to be determined. In particular it is necessary to determine the state of the FEM, TIMING and LEVEL1 modules. The coordination of the acceptance of event data by each component needs to be coordinated.

.

ONCS Functional Description for DCM Objects

These are methods which are members of a DCM object in the ONCS software architecture. These methods represent the interface and the functions which are available to ONCS high level code.

getmoduleid(long & dcmid)

returns the id of the dcm module

getcurrentstate(long & currentstate)

returns the current state of the module.

getowner(long & ownerid)

returns the owner id of the module. An owner attribute is a write access protection mechanism.

getsharedstatus (long & sharedstatus)

returns the shared status of the dcm module. Shated status is an attribute of an DCM object which was included if DCM modules are shared by partitions.

getname(char *& name)

returns the name assigned to this DCM module

gettype(long & type)

returns the DCM module type (analog, digital, tec)

DCM Functional Description

These functions are supplied by DAQ to provide component specific access and control of DAQ hardware

All functions return a status which indicates the success or failure of the function

All integer arguments will be signed 32 bit integer values

Hardware component access functions are written with a C argument specification

Function data will be loaded into the local memory of the DCM controller. The description and location of this information will be contained in a self describing data structure which will be an argument of all functions which require or are to return data blocks. A description of the data structure follows. In this structure all short values are 16 bit values. All integer and long vlaues are 32 bit signed integers.

Data Structures

The following data structures are used in the arguments to the DCM functions.

struct dcmdata {

	short datatype;		// indicates the data type.

	short devicetype;	// identifies the device type this data is for

	int bytecount;		// identifies the number of bytes of data

	char * data;		// pointer to the data

};

DCM / ONCS Error Handling

ONCS code must be isolated from application errors which may occur. In particular this must include bus errors and segmentation faults. ONCS and DAQ software development must agree on how and where error handling will be executed to achieve the desired software isolation

It is also important that a function call to DAQ supplied hardware device access functions not block ONCS server code. All DAQ supplied functions will contain a timeout value which will cause a error handling function to be called if the timeout is exceeded.

DCM Component Access Functions:

get_ev_count_value(long deviceid, long unit, long * count , long * status)

return the event counter value

get_busy_count(long deviceid, short unit, long & count , short & status)

 return the busy count

get_device_value(long deviceid, short unit, long & value , short & status)

return the value of other components in the DCM. At this point other DCM devices have not been identified.

getBusystatus (int dcmunitid, long busystatus, long interval)

	returns the number of busy transitions for the specifed dcm module

getHistogram (long dcmunit, long deviceid, struct dcmdata * histogram)

	returns the timing or event histogram data.

getbootid (long dcmunitid, long bootid)

returns the boot id of a DCM module

DCM State Transition Functions:

These are methods of a DCM object which is associated with the DCM module.

int reset(long dcmunit)

returns the DCM to the initialized state

int reboot(long dcmunit)

returns the DCM to the hardware booted state. The DCM unit must be reinitialized after this function is executed.

int verify(long dcmunit, long level)

This operation is run after the DCM is in the downloaded state. This module runs a test routine on the fake data

int Pause(long dcmunit)

This module pauses the DCM.

int Resume(long dcmunit)

This module restarts the data collection. No values are changed in the DCM. New events are accepted by the DCM module

int Stop(long dcmunit)

This module stops the DCM data collection. No new events will be accepted by the DCM

Initialization Functions

int loadFpga(long dcmunitid, struct dcmdata & fpgadata)

loads the FPGA with the zero suppression data

int runmode(long dcmunit, long runmode, long eventsource, long eventdestination)

sets the run mode of the DCM module to indicate the source of the events to the DCM module

int loadPedestaltable(long dcmunitid, struct dcmdata & pedestaltable)

loads the pedestal correction table (32 - 64 K of data)

int loadEventMemory(long dcmunitid, struct dcmdata & fakeevents)

load fake event data for the given dcm module

int loadThreshold (long dcmunit, struct dcmdata * thresholddata)

loads the threshold data to the specified DCM module

int loadDsp (long dcmunitid, struct dcmdata & dspcode)

loads DSP code in the specified DCM module

Method Description

int loadFpga(long dcmunitid, struct dcmdata & fpgadata)

Loads the FPGA with zero suppression data.

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

fpgadata - a reference to a structure which contains the length of the data and a pointer to the data

Returns:

status - a return status value of the success of the operation. The method will load the fpga and perform an internal check on the success of the operation. The method returns a success or failure status:

return values:

0 = success

n = failure code (the code value and range is TBD)

int runmode(long dcmunit, long runmode, long eventsource, long eventdestination)

sets the run mode of the DCM module to indicate the source of the events to the DCM module

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

fpgadata - a reference to a structure which contains the length of the data and a pointer to the data

runmode - the runmode in which the DCM module is to run

eventsource - an identifier which specifies the source of the events to the DCM module

eventdestination - an identifier which specifies the destination of the events from the DCM module.

Returns:

status - a return status value of the success of the operation.

Status:

return values:

0 = success

n = failure code (the code value and range is TBD)

int loadPedestaltable(long dcmunitid, struct dcmdata & pedestaltable)

loads the pedestal correction table (32 - 64 K of data).

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

pedestaltable - a reference to a structure which contains a count of the amount of data to be downloaded and a pointer to the data

Returns:

status - a return status reference. The method implementation will return the status success.

return values:

0 = success

n = failure code (the code value and range is TBD)

int loadEventMemory(long dcmunit, struct dcmdata & fakeevents)

load fake event data

Parameters:

	dcmunit - the unit number of the dcm module on a dcm board

fakeevents - a structure reference which contains a count of the number of events and a pointer to the event data to be loaded

Returns:

status - a return status reference. The method implementation will return the success status

return values:

0 = success

n = failure code (the code value and range is TBD)

Initial state:

Initialized

These methods can only be executed when the DCM object is in the initialize state.

Final state:

 downloaded

Successful execution of all initialization methods places the DCM module in the downloaded state.

int loadEventMemory(long dcmunitid, struct dcmdata & fakeevents)

load fake event data

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

dspcode - a structure reference which contains a size and a pointer to the DSP code to be loaded into the DSPs.

Returns:

status - a return status reference. The method implementation will return the success status

return values:

0 = success

n = failure code (the code value and range is TBD)

int loadThreshold (long dcmunit, struct dcmdata * thresholddata)

loads the threshold data to the specified DCM module

Parameters:

		dcmunitid - the unit number of the dcm module on a dcm board

Returns:

status - a return status reference. The method implementation will return the success status

return values:

0 = success

n = failure code (the code value and range is TBD)

getBusystatus (int dcmunitid, long busystatus, long interval)

	returns the number of busy transitions for the specifed dcm module

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

busystatus - the status information of the busy. This will specify the number of transitions of busy information during a specified interval

interval	- the interval of time in milliseconds for which the busy status applies

Returns:

status - a return status reference. The method implementation will return the success status

return values:

0 = success

n = failure code (the code value and range is TBD)

getHistogram (long dcmunit, long deviceid, struct dcmdata * histogram)

	returns the timing or event histogram data.

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

deviceid	- the device id which will identify the type of histogram data which is to be returned. Currently there may be timing or event historgram data

histogram - a pointer to the data structure in which the data is to be returned. This structure is identical to the self describing data structure which is used to download data.

Returns:

status - a return status reference. The method implementation will return the success status

return values:

0 = success

n = failure code (the code value and range is TBD)

getbootid (long dcmunitid, long bootid)

returns the boot id of a DCM module

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

bootidid	- the boot id of the specified DCM module.

Reset

int reset(long dcmunit)

This operation returns the DCM module to the initialized state from the downloaded state. The internal definition of what initialized means is to be determined by the DAQ group.

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

Returns:

return status of the verify operation

return values:

0 = success

n = failure code (the code value and range is TBD)

Initial state:

downloaded

Final State:

initialized

Download

int Download(long dcmunitid)

This .module executes all the functions to download individual components of the DCM with their required code and data.

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

Initial State:

initialized

Final State:

downloaded

Verify

int verify(long dcmunitid , long level = 0)

This operation is run after the DCM is in the downloaded state. This module runs a test routine on the fake data.

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

status - return status of the verify operation

level -		 the level at which the verify operation is to run. A default level of zero is the normal and minimal level of system verification. Higher levels will be specified for more extensive verification operations

Return values:

0 = success

n = failure code (the code value and range is TBD)

Initial state:

downloaded

final state:

ready to run

Enable

int Enable(long dcmunit)

This module enables the DCM to accept events.

 	

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

Initial State:

ready to run

Final State:

enabled

Pause

int Pause(long dcmunit)

This module pauses the specified DCM.

Parameters:

		dcmunitid - the unit number of the dcm module on a dcm board

Initial State:

enabled

Final State:

paused

Resume

int Resume(long dcmunitid)

This module re enables the data collection module. No values are changed in the DCM. New events are accepted by the DCM module.

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

Returns::

short	return status

	0 = success

	n = failure code TBD

Initial State:

paused

Final State:

enabled

�

Stop

int Stop(long dcmunitid)

This module stops the DCM data collection. No new events will be accepted by the DCM

Parameters:

	dcmunitid - the unit number of the dcm module on a dcm board

Returns:

	status of stop command. The DCM will no longer accept events and will be placed in the ready to run state

Initial State:

enabled

Final State:

ready to run

State Transition Table

							

�
�
reset�
init�
downld�
verify�
enable�
pause�
resume�
stop�
�
1�
initialized�
�
2�
�
�
�
�
�
�
�
2�
downloaded�
1�
1�
3,2�
3�
�
�
�
�
�
3�
ready to run�
1�
�
�
�
4�
�
�
�
�
4�
enabled�
�
�
�
�
�
5�
�
3�
�
5�
paused�
�
�
�
�
�
�
4�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�PAGE �

�PAGE �1�

