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Optical Traps –Bowls made of Light

Our atom: 

Μagnet coils

Mixture of 
Spin–up and Spin–down
(like electrons—fermions) 
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A consequence of the Heisenberg Uncertainty Principle

• Physical Properties, like Energy and Temperature have  
           Natural Units determined by L

• Viscosity? 

Quantum Viscosity Unit

The Universal Regime: Natural Units and Rulers
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Strongly Interacting 
Systems in Nature

Duke, Science (2002)

Strongly Interacting 6Li gas 
T = 10-7 K

 Ultracold Atomic 6Li Gas
 Quark-Gluon Plasma
 High Tc Superconductors
 Neutron Matter
 Black Holes in String Theory

Similar “Elliptic” Flow Quark-gluon plasma T = 1012 K
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Conjecture—String Theory

Kovtun et al., 
PRL 2005

Resistance to flow—hydrodynamic properties 

Disorder—thermodynamic properties 

Is a Strongly-interacting atomic 6Li gas a  
 fluid with the minimum viscosity?
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  Measuring the Energy E and Entropy S

Duke, PRL (2005)

For a universal quantum gas,
the energy E is determined 
by the cloud size

For a weakly interacting quantum gas
the entropy S can always be determined  
from the cloud size  (textbook problem)

Experiment

End
Weakly interacting

Sweep magnetic field

Duke, PRL (2007)

Start
Universal strongly
Interacting   
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 Energy versus Entropy 

Ideal gas

 Data: Strongly 
interacting 6Li gas

Critical temperature for 
the superfluid transition 
= 0.20 (natural units) 

Analog of a super-high temperature 
superconductor that would work
at several thousand degrees!
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Measure the angle of the cloud

Measure the angle of the long axis
 of the rotating cloud with respect 
to the laboratory axis 
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How low is the viscosity?

Rotates faster as it expands—
opposite to the behavior
of an ice-skater!
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How low is the viscosity?

Superfluid, Ω0 = 178 rad/s Normal Fluid, Ω0 = 178 rad/s 

Theory—superfluid flow

viscosity = 2 
viscosity = 2
viscosity = 1
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Viscosity/Entropy (natural units) 

He near λ−point

QGP simulations

String theory limit
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