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General features of multiplicities
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Growth with energy and centrality.

Apparent flat region in the
mid-pseudorapidity. In the rapidity
space the distributions are however
gaussian and no hint of plateau is
seen.

Growth with energy at mid-rapidity is
mild:

2
Npart

dN
dη |η<1 ∼ ln

√
s and no deviations

from this behavior are observed.
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Hypothesis of limiting fragmentation

Benecke, Chou, Yang, Yen:

For very high energy collisions in the lab system (target at rest) or
a projectile system (projectile at rest) some of the outgoing
particles approach limiting distributions.

The limiting distributions represent the broken-up fragments of the
target. The fragments of the projectile move with increasing
velocity as

√
s→ ∞ (in the lab frame) and do not contribute to the

limiting fragmentation. To study these fragments one has to go to
the projectile system.

In the laboratory frame the incoming particle is a Lorentz
contracted system which passes through the target. The excitation
of the target may cause a break up of the target.
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Hypothesis of limiting fragmentation (contd.)

P

T

The constancy of the total cross section and of the elastic scattering cross
sectionsuggests that the momentum and quantum-number transfer
process between the projectile and the target does not appreciably
change when the projectile is further and further compressed.

The hypothesis of limiting fragmentation gives emphasis to the lab
and projectile systems. In this it is very different from the statistical
model. In the latter model model the two incoming particles collide
and arrest each other in c.m. system the final product of the
collision being emitted from this arrested amalgamation of the
original particles.
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proton-(anti)proton collisions

Pseudorapidity distrbution

Shifted pseudorapidity distribution
in η ′ ≡ η −Ybeam

Ybeam= ln

√
s

mp
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Nucleus-nucleus collisions
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Limiting fragmentation for both central and peripheral collisions.
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e+e−annhilation

It works for e+e− too . . .

Distribution vs y−Yjet, the motion is described along the thrust axis.
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Possible models

(Hard) kT factorization and gluon saturation in Color Glass
Condensate, Kharzeev, Levin, Nardi; Jalilian-Marian; Gelis, Venugopalan, A.S.

(Soft) Bremsstrahlung from color charges, Białas, Jėzabek

(Soft) Color string model, Braun, Pajares

. . .
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kT factorization and gluon saturation

kt factorization for gluon production at high energy s≫ pT :

dN
dyd2pT

=
αsSAB

2π4CFSASB

1

p2
T

∫

d2kT

(2π)2 φA(x1,kT)φB(x2, |pT −kT |)

φA,φB gluon distribution for the nuclei A,B respectively.

SA,B total transverse area for nuclei.

SAB transverse area for an overlap region.

pT transverse momentum of the produced gluon.

x1 = pT
m ey−Ybeam, x2 = pT

m e−y−Ybeam; longitudinal momentum fractions
of the gluons probed in target and projectile.

Already simplified formula, valid at zero impact parameter with
uniform density (can do better by including impact parameter in
φA,B).

Kharzeev, Levin, Nardi; Kovchegov, Tuchin; Szczurek . . .
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kT factorization . . .

Several points to mention about the formula:

The formula contains mild divergence at small pT , needs
regularization.

Functions φ are gluon distributions. In principle it is possible to
include also quarks (Szczurek).

Perturbative formula valid in principle at high pT ; we know from
experiment that the (integrated over pT ) rapidity distributions are
dominated by low pT particles.

Functions φ(x,kT) are unintegratedgluon distributions, in principle
defined at small values of x (as well as the whole approach)

xg(x,Q2) ∼ ∫ Q2
d2kTφ(x,kT)

Extrapolation and suitable ansatz for φ at large x is needed.

Experimentally measured hadrons, need to do a fragmentation
from gluons (quarks) to pions, but the scales are very low → would
need nonperturbative fragmentation functions.
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Unintegrated gluon distributions

Several calculations available, mainly from the linear evolution
equations (no saturation), see ex. Szczurek.

Saturation ansatz: Kharzeev, Levin, Nardi

φ from CGC Albacete, Armesto, Salgado, Wiedemann; Gelis, Venugopalan, A.S.:

φ(x,k) ≡ Nk2
∫

drrJ0(kr)Tr〈U(0)U†(r)〉Y

〈. . .〉 CGC average over the color sources in the hadron and
Y ≡ ln1/x.

Define Tr〈U(0)U†(r)〉Y ≡ N2
c (1−T)2.

Calculate T directly from CGC equations → Balitsky-Kovchegov
equation.

dT(r,Y)

dY
= ᾱs(K⊗T)(r,Y)− ᾱs(K⊗T ⊗T)(r,Y)

where K is the BFKL kernel and r is coordinate conjugate to
momentum k. Limiting fragmentation – p.11/21



φ distribution from BK equation
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k) Peak of the distribution is at
the saturation scale Qs(Y).

Soliton moves to higher k’s
as Y increases.

The area under the integral
is constant, conserved
during the evolution in x

∫

d2k
k2 φ(x,k) = Const.

This is consequence of the definition of φ through the unitary matrices

and the nonlinear evolution equation.
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Qualitative analysis

Pseudo-rapidity distribution:

 
x1=x2x1<<x2 x2>>x1

Y

Recall:

x1 =
pT

m
eY−Ybeam

x2 =
pT

m
e−Y−Ybeam

dN
dy

∼
∫

d2pT

p2
T

∫

d2kT φA(x1, |kT |)φB(x2, |pT −kT |)

When x1 ∼ x2: QA
s (x1) ∼ QB

s (x2) → entanglement in momenta.

When x1 ≫ x2: QA
s (x1) ≪ QB

s (x2) → separation in transverse
momenta,

dN
dy

∼
∫

d2pT

p2
T

∫

d2kT φA(x1, |kT |)φB(x2, |pT |)
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Qualitative analysis

When x1 ≫ x2 (or x2 ≫ x1) we have separation of integrals in kT space:

dN
dy

∼
∫

d2pT

p2
T

φB(x2, |pT |)
∫

d2kTφA(x1, |kT |)

Integral over projectile density constant:
∫ d2pT

p2
T

φB(x2, |pT |) = const.

Integral over target density:

∫ Qs(x2)

d2kT φA(x1, |kT |) = x1g(x1,Qs(x2))

Integrated parton density at large values of x1:

x1g(x1,Qs(x2)) = x1g(x1)

exhibits x1 scaling.
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Scaling in limiting fragmentation

dN
dY

≃ N x1g(x1) = F (Y−Ybeam), x1 ≫ x2

scaling with Y−Ybeam(recall x1 ∼ exp(Y−Ybeam)).

For comparison with data:

Need to model φA(x1,kT) at large x1.

Since x1g(x1) should obey x1 scaling

x1g(x1) = x1g(x1,Q
2
s) =

∫ Q2
s
dk2φA(x1,k)

the distribution φA must be peaked at very low kT and sharply fall
for large kT .

φA(x1,kT) at large x1 is the largest source of uncertainty when
comparing with the data.
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Proton-antiproton and AuAu(central) collisions

Gelis, Venugopalan, A.S.
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Small violations of limiting fragmentation scaling due to the fact that
in some models we do not have approximately scaling of x1g(x1).

Additional uncertaintes connected with y↔ η change and
fragmentation functions.
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Extrapolation to LHC

pp collisions:
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Still there are many parameters: a lot of uncertainty in the predictions.
Some models give violations of limiting fragmentation. For example MV
input φA(x1,kT) at large x1 has too large tail in kT .

Limiting fragmentation scaling is related to x1 scaling at large x1.
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Bremsstrahlung from color sources

Białas, Jėzabek

Particle production proceeds by number of color exchanges
between two sets of partons, one from target and one from
projectile.

Color charges lead to the emission of particles by the
bremsstrahlung process.

In the fragmentation region the partons in the projectile are treated
independently from the ones in the target.

The original distribution of partons in the target is flat in the rapidity,
which gives the linear increase of the multiplicity spectrum with Y.

Increase of the multiplicity distribution stops when Y = Y0, because
the partons with life time longer than the exchange process can
participate in the interaction.
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Bremsstrahlung from color sources

Distribution of partons in rapidity is uniform:

dn(z+) = b(1−z+)b−1 dz+
z+

Emission of particle clusters in the bremsstrahlung process:

dN(x+) = a(1−x+)a−1 dx+

x+

The rapidity distribution of particles is then:

dN(x+) = λ
∫

max{z0,x+}
b(1−z+)b−1 dz+

z+

[

a

(

1− x+

z+

)a−1
]

If x+ > z0 (parton has to live long enough) we have

dN
dy

= x+
dN
dx+

= λab[C+ lnM/m+Ybeam−y]

Linear increase with increasing Ybeam−y.
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Color string scenario

Braun, Pajares et al

Color strings are
stretched between the
colliding partons, which
then decay into
observable particles.

Taking into account
transverse dimensions of
the string leads to
phenomenon of string
fusion and percolation.

Because of fusion mul-
tiplicities become signifi-
cantly damped.
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In case of gold - gold collisions the fusion of strings is essential in order

to obtain the description of the experimental data.
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What have we learned?

Limiting fragmentation:

Factorization of parton distributions in target and projectile at
large rapidities.
Then the multiplicity distribution is directly proportional to the
parton density in the target (i.e. gluon and quark density at
large x) which has to be nearly flat in rapidity and independent
of the scales in the process.
These models imply that the limiting fragmentation arises
because the rapidity distribution of the produced particles are
determined early in the scattering process, essentially by the
form of the initial states.

Applicability of CGC:

In principle: string picture ↔ soft, CGC+Pomeron ↔ hard.
CGC picture, (hard approach) describes multiplicities.
Striking similarities: string fusion vs saturation in CGC.
Qualitative and quantitative agreement of multiplicities ( and
average transverse momentum).
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