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dN/dη vs. Beam Energy

RHIC has covered a lot of ground in 5 years of A+A



Scope of this talk

•Nch

•dN/dη|η=0

•dN/dη

•Some discussion of pT distributions

Hope to hear more in rest of this workshop!
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What will the LHC look like? Only 2 years to go...



proton + (anti)proton collisions



electron-positron annihilation → hadrons



Modelling p+p
• Obviously a huge 

subject

• Two component 
picture
• Parametrize soft component

• PDFs & pQCD model hard 
component

• pQCD evolution controls hard 
part

• Various 
implementations
• PYTHIA, HERWIG, PHOJET, 

HIJING

• Very different evolution I. Dawson, ATLAS



Modelling e+e-
• An equally huge subject

• Two common 
approaches

• String model → Parton 
showers

• Resummed pQCD 
calculations (MLLA)

• Effectively one-
component

• Entire system is 
hadronized

• pQCD evolution is 
primary dynamical 
component of the total 
multiplicity



Raw Data on Nch 
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pQCD
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JETSET & PYTHIA
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“leading” particles “keep” 
an arbitrary fraction of the 

initial energy 

Flat probability distribution:

〈xF 〉 ∼ 1/2

√
seff = 〈xF 〉

√
s =

√
s

2
“effective energy”
(a la Basile et al)

p

xF =
2pz
√

s

p

The Leading Effect



Correct Leading Effect
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One more thing...



Fermi-Landau Model
Total Energy

Total Volume

Energy Density E/V
(>3 TeV/fm3 @ RHIC!)

E =

√

sNN

V =
V0

√

sNN/2mN

ε =
s

2mNV0

p =
1

3
ε σ ∝ ε

3/4 N ∝ S = σV ∝

s3/4

s1/2
= s

1/4

Energy + Volume + Blackbody thermodynamics

Cooper, Frye, Schonberg (1975)



Longitudinal Flow

∆z ∼
1
√

s

z

y
dN/dy

1955: Landau solves “Relativistic Hydrodynamics” in full 3D

σy =

√

1

2
ln

(

s

4M2

P

)

∂µT
µν

= 0

P =
ε

3



Carruthers 1973
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Carruthers & Duong-van 1973

ISR 53 GeV
PISA/SUNYSB
1972 (unpub.)

“duck or
rabbit”

~dN dN
d dy

β
η
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= 200 GeVs

P. Steinberg, nucl-ex/0405022

dN
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= Ks1/4
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−
y′2
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Landau/Fermi multiplicity formula
&

Landau’s hydro dN/dy

“Limiting
Fragmentation”→
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Fig. 21. (Top panel) Distributions of pseudorapidity density of charged particles
emitted in p(p̄)+p collisions at a range of energies versus the variable η − ybeam

[172,155]. (Bottom panel) Similar data for particles emitted along the jet axis in an
e++e− collision versus the variable y

T
−yjet, defined in Appendix B.2 [173]. In both

cases, when effectively viewed in the “target” rest frame, these collisions exhibit
longitudinal scaling (energy independence).

leading naturally to extended longitudinal scaling.
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Fig. 21. (Top panel) Distributions of pseudorapidity density of charged particles
emitted in p(p̄)+p collisions at a range of energies versus the variable η − ybeam

[172,155]. (Bottom panel) Similar data for particles emitted along the jet axis in an
e++e− collision versus the variable y

T
−yjet, defined in Appendix B.2 [173]. In both

cases, when effectively viewed in the “target” rest frame, these collisions exhibit
longitudinal scaling (energy independence).

leading naturally to extended longitudinal scaling.
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Compiled in PHOBOS White Paper (2004)



pQCD “vs.” Landau

MLLA pQCD shows “limiting fragmentation” &

pQCD ↔ Landau Hydro [?!]

σy ∝

√

log(s)

K. Tesima, Z. Phys. C (1989)



Extrapolating p+p/e+e-
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for available

data...



From p+p/e+e- → A+A
•Variety of models and physical 

assumptions for p+p and e+e-
• Extrapolating even elementary collisions is not 

100% straightforward

•In principle, A+A has more 
dynamical content...



Parton distributions, 
Nuclear Geometry,
Nuclear shadowing

Parton production &
reinteraction

Chemical freezeout
(Quark recombination)

Jet fragmentation 
functions

Hadron rescattering

Thermal freezeout &
Hadron decays

Many dynamical stages, all in principle independent...
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Two-Component Model
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p+p seems to have a
“soft” E-indep. component &

“hard” E-dep. component

Changing ν should increase
fraction of hard production



Rules of Thumb

•“log rise” of dN/dη

•“limiting fragmentation”

•“Npart scaling”

•Energy/Centrality “factorization”
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Mid-rapidity Yields
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Limiting Fragmentation

~Invariance of yields at a fixed distance from beam rapidity
(see Anna’s talk)



Npart Scaling
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With increasing centrality,
rise at mid-rapidity is
balanced by decrease
at forward rapidity

Integral is surprisingly
constant per participant.
No obvious trend down

to p+p multiplicity



Energy & Centrality
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“One Component” Picture
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If “peel off” is energy-independent, dN/dη 
is just crawling up limiting curve



Comparison with e+e-/p+p

A+A appears
“Suppressed”
at low energy

A+A same as
e+e- and p+p

above SPS
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Comparison with e+e-/p+p
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Effective Energy in A+A
•Without scaling, A+A from 20-200 GeV 

has same trend as e+e- and p+p at 
same “effective” energy

• Implies ~“complete stopping” in A+A

•Not inconsistent w/ Landau initial state

• Issue of thermalization in any system on such 
short time scales is controversial

• Does not seem contradicted by data



Landau Model vs. A+A
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√
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√
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spectra and inclusive invariant yields of charged meson
π± and K±. The ratios of strange to non–strange
mesons K/π are well reproduced by the hadron gas
statistical model [6] that assumes strangeness equilibra-
tion at mid–rapidity. The excess of K+ over K− yields
at higher rapidities can be explained by the increasing
baryo–chemical potential µB with rapidity. The widths
of the pion rapidity distributions are in surprisingly
good agreement with a hydrodynamic model based on
the Landau expansion picture.
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Fig. 23. Rapidity densities of positive pions emitted in central collisions of Au+Au
(AGS and RHIC) [55,180] and Pb+Pb (SPS) [50] at a variety of beam energies.
Note that, in contrast to Fig. 1, yields in rapidity space are well represented by
Gaussians with no evidence for a broad midrapidity plateau.

distributions at all energies are identical in the region corresponding to larger
η, the data from lower energies can be used to constrain the extrapolation of
the higher energy data to the full solid angle. In addition, it should be noted
that the corrections to the PHOBOS multiplicity data depend strongly on
emission angle of the particles and also are significantly asymmetric between
positive and negative pseudorapidities. The latter effect results primarily from
the offset of the PHOBOS magnet from the center of the interaction region
(see Fig. A.1). The good agreement seen when comparing particles emitted at
different angles and for both signs of pseudorapidity indicates the robustness
of the analysis procedure, as well as providing interesting physics insight.

Fig. 24 illustrates the observation that longitudinal scaling holds over an even
more extended range of pseudorapidity in these seemingly complex high energy
A+A collisions at RHIC. Based on the pseudorapidity distribution (and, as
will be discussed in following sections, elliptic flow and perhaps even HBT), no
evidence is seen in any hadron-hadron or ion-ion collisions for two energy inde-
pendent fragmentation regions separated by a boost invariant central plateau
which grows in extent with increasing collision energy. Thus, the expectation
from the boost-invariant description of the energy evolution of rapidity distri-
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Landau’s predictions from 1955
remain valid in 2005
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BRAHMS (2004)



Comparison with e+e-/p+p

Where will
things go @ 

LHC?
(ILC? CLIC?)

osculation?



CMS

ALICE

ATLAS



Towards the LHC?

Can what we know about current data
(200 GeV A+A) be strong guidance for the 

LHC (5500 GeV A+A)? 

Big jump (x27) in energy!  
Even LHC will only be x7 Tevatron.

e+e- machines were often x2 at a time



Extrapolating Data
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Kinematic Effects
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Landau dN/dy, dN/dη
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Limiting Fragmentation to the LHC 

Same as with dN/dη -- extrapolation not constrained 
(functions are for illustration only!)
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Extrapolating Data
•Data does not speak for itself
• Interpolation is straightforward

• Extrapolation is tricky

•Prediction requires some physical 
input (i.e. concrete model)

“Past performance is no guarantee of
future results...”



Heavy Ion Models
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“Predicting LHC”
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LHC Detectors

Si Tracker
including Pixels

ECAL

 chambers

HCAL



Need for Centrality
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Multiplicity at
Finite μB

(work with Cleymans, Wheaton, Stankiewicz, UCT)



What about the Baryons?

Nucleons are “baryons”, which are conserved
and much heavier than pions - an uneven trade!



“Baryochemistry”
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At low energies, the participating baryons are found to 
“pile up”, with most of them nearly at rest.

At higher energies, relatively little at mid-rapidity



“Phase Diagram”
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Baryochemistry

G = E + PV − TS = µBNB

In equilibrium:

S =
E + PV

T
−

µBNB

T

Rearranges to:

So chemical potential reduces entropy, and
thus total multiplicity:

∆
Nch

Npart/2
∝

µB

T



Application to Data
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Baryons vs. Mesons
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Tawfik et al (2004), Cleymans et al (2005)
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Conclusions
•LHC will be an exciting place
• Lots of ideas how things will turn out

• Only one way to really know...

• Concrete predictions should be made *now*, 
before p+p turn-on in 2007!

•Low energy RHIC will be an 
exciting place
• Baryon number and entropy will become 

entangled - dynamical consequences?





Azimov, Dokshitzer, Khoze, Troian (1985)
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