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Brunelleschi’s dome:
elegant & simple
on the outside



Complicated inside
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Only 2 years until A+A @ LHC...



e+e- annihilation → hadrons



Charged primaries + some secondaries (up to 8% correction)

Modelling e+e-
• String model → 

Parton showers

• Resummed pQCD 
calculations (MLLA)

• pQCD evolution is 
primary dynamical 
component of the 
total multiplicity

nch ∝ α
A
s exp

(

B
√

ln (s)
)



minimum-bias p+p → hadrons



Modelling p+p
• Two component 

picture
• Soft component 

parametrized
• Hard component from 

PDFs & pQCD

• Various 
implementations

• PYTHIA, HERWIG, 
PHOJET, HIJING

• Different evolution
I. Dawson, ATLAS



“leading” particles keep 
arbitrary fraction of √s

w/ flat probability distribution:

〈xF 〉 ∼ 1/2

√
seff = 〈xF 〉

√
s =

√
s

2

“effective energy” (a la Basile et al)

p
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2pz
√

s

p

The Leading Effect

dN

dxF



e+e- & p+p vs. Models
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pQCD vs. Landau
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Fermi-Landau Model

Total Energy

Total Volume

Energy Density E/V
(>3 TeV/fm3 @ RHIC!)

E =

√

sNN

V =
V0

√

sNN/2mN

ε =
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2mNV0

p =
1

3
ε

Blackbody thermodynamics

N ∝ S ∝ σV ∝

s3/4

s1/2
Npart

= s
1/4

Npart

σ ∝ ε
3/4

∝ s
3/4

Cooper, Frye, Schonberg (1975)

thermalization
in overlap

region



Relativistic Hydrodynamics
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What Landau is
3+1D Dynamics 

rapid local equilibration
w/ no free parameters

→ Beam energy & Tch

determine initial & final cond
→ Energy dep. of entropy

• No transparency
• No initial boost invariance
• Entire system is in thermal 

contact at t=0

V ∝ V0/
√

s

E =
Npart

2

√

s



What Landau is not
• No net baryons (or any 

conserved charges)
• No phase transitions 

(just p=ε/3)
• No hadronization per se 

(just T=Tc)
• No thermal freezeout
• No trivial mass dependence 

of dN/dy
• No resonance decays

Caveats for all later results 

V ∝ V0/
√

s

E =
Npart

2

√

s
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P. Steinberg, nucl-ex/0405022
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Landau/Fermi multiplicity formula
&

Landau hydro dN/dy

Longitudinal
Scaling

(a.k.a. Limiting
Fragmentation)

→

“Extended Longitudinal Scaling”

L = ln

( √

s

2mP

)
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Fig. 21. (Top panel) Distributions of pseudorapidity density of charged particles
emitted in p(p̄)+p collisions at a range of energies versus the variable η − ybeam

[172,155]. (Bottom panel) Similar data for particles emitted along the jet axis in an
e++e− collision versus the variable y

T
−yjet, defined in Appendix B.2 [173]. In both

cases, when effectively viewed in the “target” rest frame, these collisions exhibit
longitudinal scaling (energy independence).

leading naturally to extended longitudinal scaling.

41

-6 -4 -2 0 2
!-y

beam

0

1

2

3

4

5

d
N

c
h
/d
!

23.6 GeV
30.8    "
45.2    "
53.2    "
62.8    "
53       "
200     "
546     "
900     "

p(p)+p inel
s

-6 -4 -2 0 2
y

T
-y

jet

0

1

2

3

4

5

d
N

c
h
/d

y
T

14 GeV
22    "
35    "
55    "
91    "
133  "
161  "
172  "
183  "

e
+
+e

-
s

Fig. 21. (Top panel) Distributions of pseudorapidity density of charged particles
emitted in p(p̄)+p collisions at a range of energies versus the variable η − ybeam

[172,155]. (Bottom panel) Similar data for particles emitted along the jet axis in an
e++e− collision versus the variable y

T
−yjet, defined in Appendix B.2 [173]. In both

cases, when effectively viewed in the “target” rest frame, these collisions exhibit
longitudinal scaling (energy independence).

leading naturally to extended longitudinal scaling.
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Compiled in PHOBOS White Paper (2004)



pQCD “vs.” Landau

MLLA pQCD shows “limiting fragmentation” &

parametrically:  pQCD ↔ Landau Hydro [?!]

K. Tesima, Z. Phys. C (1989)

σy ∝
√

ln s



Parton distributions, 
Nuclear Geometry,
Nuclear shadowing

Parton production &
reinteraction

Chemical freezeout
(Quark recombination)

Jet fragmentation functions

Hadron rescattering

Thermal freezeout &
Hadron decays

Many dynamical stages, all in principle independent...

p+p & e+e- → A+A



Nuclear Geometry
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Cannot directly measure
Npart, Nspec, b, ε, etc.

Measure distributions and
assume they are monotonic

with variable of interest

Bin data in “fractions of
total inelastic cross section”
(requires estimation of σinel)
and relate to same bin in 

geometric distribution
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Extended Longitudinal Scaling in A+A
PHOBOS, Phys.Rev.C74, 021901(R) (2006)

Just as with p+p, e+e-, extended scaling observed in A+A.
Limiting curve different in peripheral events.



Npart Scaling
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Entropy scales linearly w/ volume
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“one-component model”

Nch
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No simple extrapolation
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Au+Au & Cu+Cu
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No significant trend toward p+p observed (Npart<20!)
(but systematics preclude definitive statement)



dN/dη @ η=0
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Comparison with e+e-/p+p

A+A appears
“Suppressed”
at low energy

A+A same as
e+e- and p+p
above SPS

Models
diverge at 

high energy...
(LHC?)

/Npart/2 (6% central)

PHOBOS, Phys.Rev.C74, 021902(R) (2006)

c2
s = 1/3

Sketch of
Gubser et al

c2
s = 1/4
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Strange result: A+A approaches e+e- at 20 GeV,
and tracks it for a decade of energy
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Net Baryons
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“pile-up” at low energy, “transparency” at high energy?...
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Participant region

Binary
Collisions

Spectators
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First collision typically not enough to stop baryons

2nd+ collision is displaced in original direction,

One Possibility...



Fireball Sandwich
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Fireball Sandwich

y0 y0 y0 y0

1.  Incoming nuclei

(beam rapidities)
2.  First collision:

partial stopping

of baryons

3.  Second collisions:

full baryon stopping,

displaced centroids,

thermalization

(spectators decouple)

4.  Longitudinal

expansion of

matter, baryons

reaccelerated



Conclusions
• Multiplicity e+e-, p+p, A+A described by different 

mechanisms
• Why do the multiplicities come out the same?

• Problem of early (quasi-)thermalization
• Can a pQCD calculation act like Landau hydro?

• How small is small, anyway?



Thermal Fits to e+e-
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Figure 1. Comparison between thermal model predictions and experimental particle multiplici-
ties for e+e− collisions at

√
s=91 GeV.

Table 2
Values of fit parameters in e+e− collisions at different energies.
√

s[GeV] T[MeV] V[fm3] γs χ2/dof

10 152±1.7 20±1.5 0.82±0.02 333/21

29-35 156±1.7 24±1.4 0.92±0.03 95/18

91 154±0.50 40±1.0 0.76±0.007 631/30

130-200 154±2.8 46±4.3 0.72±0.03 12/2

However, excluding those particles from the fit does not result in a significant improvement
of the χ2 values, as is discussed below.

A further difficulty is visible if one inspects χ2 contour lines as shown in Fig. 3. One notices
in this figure an anticorrelation between the three fit parameters which is particularly
strong in (T,V) space. Closer inspection reveals, in addition, a series of local minima which
indicates the difficulty in the determination of the fit parameters. Such local minima are
typical for poor fits and imply that the true uncertainties in the fit parameters are likely
much larger than the values obtained from the standard fit procedure employed here.

Despite these caveats about fit quality and uncertainties it is noteworthy that the temper-
ature parameters obtained from the data are close to 155 MeV and nearly independent of
energy, similar to results of previous investigations. In contrast, the volume increases with

Andronic, Braun-Munzinger, Stachel (2008)
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Becattini (1997)

A long-standing issue: thermal fits work well,
but not equally well for all hadrons.

Implementation of local conservation laws matter
(quantum numbers & energy-momentum)



EMC in p+p vs. A+A
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Lisa & Chajecki: energy momentum conservation (EMC)
has substantial effect on multiparticle production.

EMC “suppresses” momentum spectrum in p+p collisions. 
→ p+p turns out to have same “flow” as A+A



Conclusions
• Multiplicity e+e-, p+p, A+A described by different 

mechanisms
• Why do the multiplicities come out the same?

• Problem of early (quasi-)thermalization
• Can a pQCD calculation act like Landau hydro?

• How small is small anyway?

• Brings out deep relation to problem of stopping
• What is a baryon?  How do they interact “softly”?

• What can AdS/CFT help us with?
• Colliding shock waves: is there a “smallest size”?  what is the 

thermalization time in CFT?

• Can it really use all 5 dimensions? 

• Experimental prospects bright
• LHC extends energy range by x27, results will be rapid



Predictions at mid-rapidity
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What are the microscopic dynamics?



A (relatively)
simple structure...
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Total Multiplicity at Finite μB
(work with Cleymans, Wheaton, Stankiewicz, UCT)



Phase Diagram
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and e+e−). However, the work of Becattini has shown that statistical models
prove to be an equally useful tool in describing the relative yields of hadrons
in collisions with relatively small multiplicities [8], although additional care
must be taken to guarantee appropriate conservation of quantum numbers
(e.g. strangeness and baryon number).

Thermal fits made by a number of authors [6,7] show that increasing the
√

sNN

in A+A collisions leads to an increase in T and a correlated decrease in µB,
shown in Fig. 1. This has been interpreted by Cleymans and Redlich by postu-
lating a fixed relationship of the freezeout parameters, such that 〈E〉/〈N〉 ∼ 1
GeV [9]. Whatever the physical scenario implied by this condition, it provides
a useful way to determine these parameters as a function of beam energy, and
to interpolate between available data points. However, it turns out that this
criterion (called “Thermal I”) does not perfectly describe the existing data. A
somewhat better description, although purely phenomenological, can be made
by a sixth-order polynomial fit in µB to the same data in the (T ,µB) plane
(“Thermal II”) [10]:

T (µB) = 0.16446 − 0.11196µ2
B − 0.139139µ4

B + 0.0684637µ6
B

In this work, we will show both parametrizations where possible.

Also in this work, we use a parametrization of µB as a function of
√

s made
by the authors in Ref. [11]

µB(
√

s) =
1.2735

(1 + 0.2576
√

s)
(3)

To apply this information to the heavy ion and e+e− data, we will invoke a
simple thermodynamic condition. When dealing with blackbody radiation, one
typically sets the Gibbs potential G = E−TS +pV =

∑
i µiNi ∼ µBNB, since

the other chemical potentials (e.g. strangeness, charge, isospin) are usually
smaller than the baryochemical potential. In this formula, E is the internal
energy, T is the temperature, S the entropy, p the pressure, µB the bary-
ochemical potential and NB the baryon number which must be conserved in
the interaction. This expression can be rearranged to show how the entropy is
related to the other variables:

S =
(E + pV ) − µBNB

T
= S0 − SB (4)

where

S0 =
E + pV

T
(5)

3
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Baryochemistry

G = E + PV − TS = µBNB

In equilibrium:

Rearranges to:

So chemical potential reduces entropy, and
thus total multiplicity:

∆
Nch

Npart/2
≡ ∆Nch ∝

SB

NB

∝

µB

T

S =
E + PV

T
−

µBNB

T
≡ S0 − SB



Phenomenology

• Need a “baryon free” Nch reference
• p+p and e+e- show same energy dependence

• p+p has leading baryons (complicated)

• choose e+e- as reference

• Two approaches
• Correct A+A data for presence of μB

• Thermal model calculation of entropy density



“Correcting” Total Entropy
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and e+e−). However, the work of Becattini has shown that statistical models
prove to be an equally useful tool in describing the relative yields of hadrons
in collisions with relatively small multiplicities [8], although additional care
must be taken to guarantee appropriate conservation of quantum numbers
(e.g. strangeness and baryon number).

Thermal fits made by a number of authors [6,7] show that increasing the
√

sNN

in A+A collisions leads to an increase in T and a correlated decrease in µB,
shown in Fig. 1. This has been interpreted by Cleymans and Redlich by postu-
lating a fixed relationship of the freezeout parameters, such that 〈E〉/〈N〉 ∼ 1
GeV [9]. Whatever the physical scenario implied by this condition, it provides
a useful way to determine these parameters as a function of beam energy, and
to interpolate between available data points. However, it turns out that this
criterion (called “Thermal I”) does not perfectly describe the existing data. A
somewhat better description, although purely phenomenological, can be made
by a sixth-order polynomial fit in µB to the same data in the (T ,µB) plane
(“Thermal II”) [10]:

T (µB) = 0.16446 − 0.11196µ2
B − 0.139139µ4

B + 0.0684637µ6
B

In this work, we will show both parametrizations where possible.

Also in this work, we use a parametrization of µB as a function of
√

s made
by the authors in Ref. [11]

µB(
√

s) =
1.2735

(1 + 0.2576
√

s)
(3)

To apply this information to the heavy ion and e+e− data, we will invoke a
simple thermodynamic condition. When dealing with blackbody radiation, one
typically sets the Gibbs potential G = E−TS +pV =

∑
i µiNi ∼ µBNB, since

the other chemical potentials (e.g. strangeness, charge, isospin) are usually
smaller than the baryochemical potential. In this formula, E is the internal
energy, T is the temperature, S the entropy, p the pressure, µB the bary-
ochemical potential and NB the baryon number which must be conserved in
the interaction. This expression can be rearranged to show how the entropy is
related to the other variables:

S =
(E + pV ) − µBNB

T
= S0 − SB (4)

where

S0 =
E + pV

T
(5)

3



“Correcting” Total Entropy

is the entropy due to the internal energy and the pressure of the system, while

SB =
µBNB

T
(6)

is interpreted as the entropy bound up in the conserved baryons, suppressing
the total entropy.

The (E + pV )/T term can be understood as the one that controls particle
production in the absence of conserved baryon charges (i.e. µB = 0). It is
assumed that this is universal for all strongly interacting collision systems
with the same expansion features, most importantly the dominance of 1D
expansion in the early stages. The second term is thus a correction which will
only be important when µBNB/T is non-negligible, i.e. at large µB or small T
or both.

This correction to the total entropy can be estimated in a crude way as follows:

• A factor of α = 4 to normalize entropy to the number of particles (as is
relevant for a massless Boltzmann gas).

• A factor of Npart/2 to give the total change in multiplicity per participant
baryon pair. This cancels the NB in the numerator since it is precisely the
number of participants which determines the conserved baryon number.

• A factor of β = 3/2 which accounts for unmeasured neutral pions. This is
based on the assumption that we are calculating the entropy of the lighter
pions that would have been produced except for the non-zero µB enforcing
the presence of heavy baryons.

In other words, this scenario postulates S/Nch = 6. Dividing by all these
factors gives:

∆Nch =
2

αβNpart

µBNB

T
(7)

=
2

αβ
× NB

Npart
× µB

T

=
µB

3T

This is the multiplicity that must be added to the low-energy results at a given√
s to account for the entropy that would have been available except for the

need to conserve baryon charge.

It turns out that direct calculations with thermal models [12], give the result
that the entropy divided by the multiplicity of final-state charged particles
(after strong decays) is S/Nch = 7.2. This number should be compared to αβ =

4

Convert change in entropy to change in multiplicity
per Npart/2

NB≡Npart

α≡S/N=4
β≡N/Nch=3/2

αβ=6 is “trivial estimate”.
THERMUS (Cleymans, et al) → αβ=7.2 (15% diff.)



Direct Calculation

• Convert √s to μB(√s) & T(μB(√s))

• Use full thermal model to compute 

• Predicts what data “should” show if

s(T, µB)

s(T = Tc, µB = 0)

In this picture, the energy dependence of the total multiplicity is determined
dominantly by the freezeout volume.

In A+A collisions, the multiplicity has been found to scale linearly with the
number of participating nucleons Npart. Since the volume of the initial nuclei
scales with A, and the freezeout entropy scales with V , this suggests that
V ∝ Npart/2 = V A+ANpart/2. We then assume that

NA+A
ch =

Npart

2
CA+AV A+As(T, µB) (9)

where VA+A is the effective volume per participant pair.

With these assumptions, the ratio shown in Figure 3 is

2

Npart

NA+A
ch

N e+e−
ch

=
CA+A

Ce+e−
V A+A

V e+e−
s(T, µB)

s0
. (10)

The right-hand side of this equation has two sets of constants (C and V) and
one ratio that depends on beam energy. The constants C control the propor-
tionality between the total entropy and the total charged particle multiplicity.
Landau and Belenkij [15] argued that this constant does not depend on the
system size, so it makes sense to set this ratio to unity. This presumption is
supported by the overall similarity in the particle production [16] (although
strangeness is clearly suppressed in the smaller systems). They also did not
think there would be a change in the relation of the multiplicity to the en-
tropy as a function of beam energy or initial baryon density. The ratio of the
volumes might not be expected to be the same. However, the agreement (to
the 10% level) of the total multiplicity per participant pair in A+A and the
total multiplicity in e+e− suggests that these volumes are similar, even as a
function of energy.

In Fig. 2 we compare the ratio s(T, µB)/s0, shown for the two parametrizations
of T (µB) (Thermal I and Thermal II), with the ratios discussed previously.
The agreement between the thermal model curve and the A+A data is in rea-
sonable qualitative agreement. This suggests that the previously-made physics
assumption

CA+A

Ce+e−
V A+A

V e+e−
= 1 (11)

is a reasonable one.

It should be noted that the concept of “pion suppression” was previously
discussed by Gazdzicki et al [17] by reference to data from a similar set of

6

C
A+A

= C
e
+

e
−

V
A+A

= V
e
+

e
−

VA+A = volume 
per participant pair

vs.
√

s



Application to Data
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Bottom Line
3 rules of thumb:

3. Use Nch: Don’t “choose” mesons vs. baryons as
true entropy carriers...

1. Effective energy has
a direct relationship to
entropy (p+p vs. e+e-)

2. Suppression of entropy
by net-baryon density

(A+A vs. e+e-)



Baryons vs. Mesons
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~Landau 
variable...
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