Forward Spin Physics

OUTLINE

- Spin puzzle and long-term goals of RHIC spin program
- Why consider forward spin physics?
- Summary

L.C. Bland Brookhaven National Laboratory Forward Physics Workshop, 10/9/03

Polarized Deep Inelastic Scattering

Add *polarization* to DIS and measure longitudinal 2-spin asymmetry...

$$\vec{e}(\vec{\mu}) + \vec{p}(\vec{n}) \rightarrow e(\mu) + X$$

 $\begin{array}{c} \text{ring} \\ \overrightarrow{e(\mu)} \\ \overrightarrow{e(\mu)} \\ \overrightarrow{\gamma^*(Q^2, \nu)} \Rightarrow x = \frac{Q^2}{2M\nu} \\ \overrightarrow{q(\overline{q})} \\ \overrightarrow{p(n)} \end{array}$

Deduce polarized structure function from measured asymmetry, $A_1 = g_1 / F_1$

$$g_1(x,Q^2) = \frac{1}{2} \sum_{q} e_q^2 \left[\Delta q(x,Q^2) + \Delta \overline{q}(x,Q^2) \right]$$

Where $\Delta q(\mathbf{x}, Q^2)$ is the difference in probability to find a quark with helicity aligned or opposite to the proton's helicity, in leading order.

$$\Delta \Sigma(Q^2) = \sum_{q} \int_0^1 [\Delta q(x, Q^2) + \Delta \overline{q}(x, Q^2)] dx$$

Defines the fraction of the proton's spin carried by quarks. It can be deduced from the integral of $g_1(x)$ measured for the proton.

$$\Delta q(x,Q^2) = q_+(x,Q^2) - q_-(x,Q^2)$$

At present, the gluon contribution to the proton spin (ΔG) is known only poorly from scaling violations in polarized deep inelastic scattering, spanning a small range of Q^2 .

 \Rightarrow Require a NEW GENERATION of experiments to determine ΔG .

\Rightarrow RHIC Spin

- determine the gluon contribution to the proton's spin
- determine the flavor decomposition of the quark (antiquark) polarization
- probe transversity: the unknown, remaining leading-twist structure function

 $\delta q(x,\!Q^2) = q_{\uparrow}(x,\!Q^2) - q_{\downarrow}(x,\!Q^2)$

Gluon Contribution to the proton's spin

qg Compton scattering with polarized protons provides a direct measure of gluon polarization.

 \vec{p} \vec{q} \vec{q} \vec{p} \vec{p}

Quark-Gluon Compton scattering

 $\overrightarrow{p}+\overrightarrow{p}\rightarrow\gamma\left(+\,jet\right)+X$

Coincident detection of γ and away-side jet \Rightarrow event determination of initial-state partonic kinematics.

Simulations of Spin Effects for W Production

Why Consider Forward Spin Physics (ALL)?

 $x_1 \frac{\sqrt{s}}{2}$

• For large $x_F = x_1 - x_2$, get kinematic selection of asymmetric partonic collisions.

+1.0

Assume collinear collisions and apply conservation of momentum • Large x_F jet production primarily selects qg scattering from other subprocesses.

0.1

x

0.01

-0.2

0.001

• there are large spin effects in QCD hard scattering processes at $gg \rightarrow gg$ (forward' angles. Note: $qg \rightarrow \gamma q$ also has large σ as $\theta^* \rightarrow \pi$ $gg \rightarrow \gamma q$ also has large σ as $\theta^* \rightarrow \pi$

• charge-squared weighted quark polarizations (g_1/F_1) within the proton are large in the large-x valence region.

n dependence of A_{μ} for inclusive γ production $_{0.2} \xrightarrow{\overrightarrow{p} + \overrightarrow{p}} \rightarrow \gamma + X$ 0.2 0.2 Gluon polarization at $O^2 = 100 \text{ GeV}^2$ < 0.50.1 0.10.1Gehrmann-Stirling Û Set A FGS-B GS-A \mathbf{GS} Set B -0.1-0.10.3 0.3 0.2 0.20.1 0.20.3 $1 < \eta_{\gamma} < 2$ s=200 GeV 0.2 0,1 0.2Set C 500 G eV 0.1 0.1 0.1

0

-2

 $\log_{10}(x_{gluon})$

• larger spin effects at more forward angles. Expect at even more forward angles that the *sensitivity* (convolution $\hat{a}_{LL} \stackrel{\bullet}{A} A_1^p$) will increase. Since large η probes small x_{gluon} , gluon polarization may decrease because of sharp increase of unpolarized gluon density as $x_{gluon} \rightarrow 0$.

0.1

0.2

0.3

• expect the $(\pi^0 + \eta^0)/\gamma$ ratio to be more favorable at forward angles than at midrapidity.

Û

0.3

0.2

0.1

 $x_T = 2 p_{T_T} / \sqrt{s}$ LCB, hep-ex/9907058

Û

0.1

0.2

0.3

• expect sensitivity to gluon polarization for forward jet (as well as γ) production.

Possible Problems at Forward Angles

• Is it possible to access large enough $p_{\rm T}$ where NLO pQCD is applicable?

Although α_s does not vary much over accessible scales at RHIC, large η will primarily probe small $p_T \Rightarrow$ need to understand scale dependence of fixed order calculations.

• Large x_F means high energy particles. Detection is best accomplished using electromagnetic + hadronic calorimetry + charge-sign determination from tracking through a magnetic field.

• For increasing p_T at large x_F , faced with increasingly steep falloff of $dN/d\eta$ distributions.

Forward Cross Sections vs. NLO pQCD

•G. Rakness (DIS03);

•S. Heppelmann (Transversity Workshop, Athens)

•Publication of results well underway

• Preliminary results for forward π^0 production cross sections measured at STAR are in fair agreement with NLO pQCD calculations that use factorization and renormalization scales equal to p_T of the π^0 .

• Data compares much more favorably to NLO pQCD for forward π^0 production at RHIC than for fixed target ($\sqrt{s} \sim 20$ GeV) or ISR energies ($\sqrt{s} \sim 60$ GeV).

Forward Transverse Spin Physics

Non-zero values of A_N have been observed in FNAL E704... $p_{\uparrow} + p \rightarrow \pi + X$ $\sqrt{s} = 20 \text{ GeV}$, $0.5 < p_T < 2.0 \text{ GeV/c}$ Theoretical models that explain the E704 data also predict nonzero A_N for pion production at RHIC at $\sqrt{s} = 200 \text{ GeV}$. There are multiple possible dynamical sources:

• Collins effect \Rightarrow *transversity* \otimes spin-dependent fragmentation

• Sivers effect \Rightarrow spin- and k_{\perp} -dependent distribution function

• Higher-twist effect

 π^0 - D.L. Adams, et al. Phys. Lett. B261 (1991) 201.

 π^{\pm} - D.L. Adams, et al. Phys. Lett. B264 (1991) 462

Hints of Transversity?

Semi-inclusive DIS (27.5 GeV): $e + p_{\uparrow} \rightarrow e + \pi^{\pm,0} + X$

 \Rightarrow transversity \otimes *chiral-odd* fragmentation (Collins) function?

• Azimuthal asymmetries ($A_{\rm UL}$) have recently been reported by the HERMES collaboration (PRL 84, (2000) 4047) for π^+ and π^0 production (asymmetries consistent with zero for π^-).

• This data has stimulated significant activity in the theoretical spin physics community (see review by Barone, Drago and Ratcliffe, Phys. Rep. **359** (2002) 1).

• More recently, asymmetries were also observed in low Q^2 polarized SIDIS at JLab (5.7 GeV).

• HERMES recently completed measurements with transverse target polarization providing sensitivity to separation of Sivers and Collins effects. Preliminary results suggest contributions from both mechanisms.

- Measured cross sections consistent with pQCD calculations
- Large spin effects observed for $\sqrt{s} = 200$ GeV *pp* collisions Status: final analysis complete / paper in collaboration review

STAR Forward Pion Detector (construction for Run 3). $t + Au \rightarrow \pi^0 + X, \forall s_{NN} = 200 \text{ GeV}$ $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} (0 < E_{\pi} < 80 \text{ GeV}) \\ 0 & (\pi - 4 \text{ (relative to d)}) \\ 0 & (\pi - 4 \text{ (rel$

Run 3 Objectives:

- probe of Color Glass Condensate in d+Au $\Rightarrow p_T$ dependence of large η yield
- improve understanding of dynamical origin of A_N in $p_\uparrow + p \to \pi^0 + X \Rightarrow$
 - \succ Collins effect \rightarrow sensitivity to transversity
 - \succ Sivers effect \rightarrow sensitivity to orbital motion
 - > twist-3 effect \rightarrow quark/gluon correlations
- serve as local polarimeter at STAR IR

BNL, Penn State, IHEP-Protvino, UC Berkeley/SSL, UCLA, ANL

Towards Disentangling the Dynamics...

• Partial reconstruction of the forward jet may be possible for run-3 data by exploiting the overlap of the STAR Forward π^0 Detector (FPD) and Forward Time Projection Chamber (FTPC). Full reconstruction of forward jet will likely require the addition of hadronic calorimetry to supplement FPD. \Rightarrow Do jets have large A_N ? Is the large A_N correlated with the Collins angle (azimuthal angle between π^0 and jet thrust axis?)

Summary

- Large rapidity γ , jet detection may provide interesting corners of phase space to probe for gluon polarization (A_{LL} measurements).
- Large rapidity π^0 production cross sections in fair agreement with NLO pQCD at $\sqrt{s} = 200$ GeV.
- Large analyzing powers observed for large-rapidity π^0 production for $p_{\uparrow}p$ collisions at RHIC ($\sqrt{s} = 200 \text{ GeV}$) may probe transversity (Collins effect) or orbital motion of partons (Sivers effect). Further measurements are needed...
 - o analyzing power for π^+ and π^- production
 - o measurements of $p_{\rm T}$ dependence at fixed $x_{\rm F}$
 - o analyzing power for forward jet production