

Forward Physics in BRAHMS at RHIC

J.H. Lee (BNL) For the BRAHMS Collaboration

Oct. 9 Forward Workshop

Forward Physics in R.H.I. Collisions: Mapping Space-time Evolution

Formation of Hot Matter, QGP?

- -Identifying and Characterizing the Hot Matter
- How does the system extend/develop? Transverse and longitudinal dynamics
- Strong constraints for theoretical modeling/interpretation
- Initial Conditions/Partonic Dynamics: High- p_T vs y
- Collective Hydro-dynamics: Flow (radial and elliptic) vs y
- Thermodynamic and freeze-out properties: Temperatures, Ratios, HBT vs y
- Baryon Transport: Net-baryon vs y
- Bulk Properties: dN/dy

Large Rapidity Measurements: Limits and Challenges

- Kinematic limits:
 - $-p_{T} \sim 4 \text{ GeV}/c \text{ for } p = 100 \text{ GeV}/c$
 - at BRAHMS' current limit (FS@2.3deg/y_{π}~4)
 - $p_T \sim 7 GeV/c$ at FS@4deg
- High track density
- High particle momentum
 - Momentum/Energy determination
 - Particle identification
- Background
- Limitations in instrumentation: Beam pipe+magnets

Braod RAnge Hadron Magnetic Spectrometers

- Designed to study nuclear reactions in broad kinematic range $(y-p_T)$
- 2 movable spectrometers with small solid angle measuring charged identified hardrons precisely
- Centrality detectors (Si+Scintillator Tiles) to characterize events
- 53 people from 12 institutions from 5 countries

Highlights of BRAHMS Measurements in Au+Au Collisions

- Bulk properties
 Particle production: dN/dη, dN/dy(π,K,p)
- Thermodynamic/Hydrodynamic properties Chemical: particle ratios, strangeness production Thermal: identified particle spectra in a wide range of p_T T ,<P_T> vs Y
- Baryon transport
 Net-proton distributions in O<Y<~3
- High- p_T probe

 $p_{\rm T}\mbox{-}dependent$ particle production (High- $p_{\rm T}\mbox{-}suppression)$ at y~0, y~2

All as a function of rapidity

Pion and Kaon spectra in y = 0 - 3.5 for 0-5% central Au+Au

Pion: Power law fit

> vs rapidity

- AMPT (HIJING + Re-scattering) shows stronger y dependence then data
- 3D-Hydro describe y-dependence of data with a single T_{th} value at~ 100 MeV (initial condition is tuned for dN/d η and T_{ch} = 170 MeV)
- Strong Radial Flow in O< y<~3 (Blast-Wave Fit gives T~120 MeV β ~0.6 at y=0)

"Universal" Correlation in K⁻/K⁺ vs pbar/p?

PRL 90 102301 Mar. 2003

 S. V. Afanasiev et al., NA49 Collaboration, nuclex/0205002, nucl-ex/0208014; M. Van Leeuven, Proc. Quark Matter 2002. P. Seyboth, private comm.
 I. G. Bearden et al., NA44 Collaboration, Phys. Rev. C66, 044907 (2002).

BRAHMS

By simple quark counting in quark recombination K-/K⁺

- = exp($2\mu_s/T$)exp($-2\mu_q/T$)
- = $exp(2\mu_s/T)(pbar/p)^{1/3}$
- = (pbar/p)^{1/3}

by assuming local (in y)

- strangeness conservation
- K⁻/K⁺=(pbar/p)^α
 α = 0.24±0.02 for BRAHMS
 α = 0.20±0.01 for SPS
- Good agreement with the statistical-thermal model prediction by Beccatini et al. (PRC64 2001): Based on SPS results and assuming T_{ch}=170 MeV

Energy dependence of dN/dy: π and K

• No clear "plateau" observed for π and K

- Rapidity dendities : Close to a Gaussian shape ($\sigma(\pi^+) \sim \sigma(K^+) \sim 2.4$)
- Yield is extrapolated from a double Gaussian (better description of data)
- SPS->RHIC: dN/dy for π^+ gets narrower, K⁺ similar or wider

Energy dependence of Rapidity distributions

AGS->RHIC: $\sigma(K)$ and $\sigma(\pi)$ scale approximately linearly with ybeam

Oct. 9 Forward Workshop

Energy dependent Net-proton

Oct. 9 Forward Workshop

Rapidity Dependent high-p_T Suppression

- The Au-Au data from RUN2 show similar suppression effects at $\eta \sim 0$ and $\eta \sim 2.2$ (different at High p_{τ} ? Need more data.)
- Medium Density scales to Multiplicity?
- Need to measure at higher rapidities with identified particles Oct. 9 Forward Workshop

Summary of 200 GeV results I

- Bulk properties and Baryon transport
 - Rapidity distributions for π , K are near Gaussian with
 - σ ~ 2.4 linearly scales with y_{beam}
 - near flat net-proton yield in y < ~ +-1 (dN/dy(net-baryon) ~16 at y=0)
 - Increasing transparency with energy
- Thermodynamic properties
 - Statistical model describe system with a chemical freeze-out for rapidity 0-3.5 with T = 170 MeV
 - System freeze-out thermally with T \sim 100-130 MeV with strong radial flow (β \sim 0.6)
 - Thermal and Chemical properties are similar in y = 0-3.5 for the particles produces with a narrow Gaussian distribution: Is something missing in the interpretation?

Summary of 200 GeV results II

- Hard Probe
 - High-p_T suppression at η =0, 2.2 due to medium effect
 - $R_{(\eta=0)}/R_{(\eta=2,2)} \sim [dN/d\eta_{(\eta=0)}]/[dN/d\eta_{(\eta=2,2)}] \sim 1$
 - R for Identidied Particles in AuAu, dAu: Limited statistics/Analysis in progress
- Rapidity dependent measurements and Theoretical Models
 - Different parameters measured have different "plateau" region
 - No models can describe all observables well
 - Constraint for theoretical ingredients for models
 - More New Physics Opportunities in Forward?

٠

Forward Physics II: Proving QCD at small-x

The p_T distribution for particles produced in a pA collision.

- Proving initial state gluon saturation/coherence at small-x (CGC)
- $Q_s^2(s; \pm y) = Q_s^2(s; y = 0) \exp(\pm \lambda y).$
- \bullet Saturation Scale Q_{sat} can be more easily reached at high-y
- BRAHMS took data in d-Au (RUN2)

- At y=3 pt ~ 3-4 GeV/c (x~ 10-3)

- Current Data set being analyzed might not have sufficient kinematic coverage to address CGC based on the latest predictions

• Need more data depending on the results of the analysis and theoretical development

Oct. 9 Forward Workshop

Forward Measurements in the Future I

Measurements Planned in Run4

• More high- p_T measurement at different (higher) rapidities

at y ~ 3 up to $p_{\rm T}$ ~ 4 GeV/c for identified particles

• More detailed measurements of hydrodynamic properties: Elliptic Flow (reaction plane- p_T -centrality-**rapidity**-particle)

with a limited $p_{\rm T}$ coverage. (need more run time for high-p_v2

 Correlation measurements at Forward: HBT, Coalescence

With a limited acceptance (only $R_{\rm T}\,at$ Forward) and $p_{\rm T}\,ranges$

Oct. 9 Forward Workshop

Forward Measurements (considered) in the Future II

- Physics interests in beyond the current BRAHMS forward limit ?
 - Lowing saturation scale in CGC with y [d(p)-Au]
 - Limiting Fragmentation of identified particles
 - More high rapidity baryons: More complete understanding of Baryon Transport
- Missing pieces of net-baryon measurements
 - n, lambda,
- More direct Hard probe (Wang: nucl-th/037036)
 Centrality Dependent Forward jets (leading particle identification by tracking and/or RICH + Calorimeter)
- ... Di-lepton at Forward?

Needed for the Future Measurements in Forward

- Larger Acceptance
 - Statistics: High- p_T particles, Flow measurements,...
 - Two-particle acceptance: HBT, Resonances
- Additional Detectors
 - Reaction plane (existing Si +)
 - Jets (Calorimeter)
 - More Forward (new magnet, Si tracking...)
- More theoretical inputs for forward regime

The BRAHMS Collaboration

I.Arsene¹⁰, I.G. Bearden⁷, D. Beavis¹, C. Besliu¹⁰, B. Budick⁶,H. Bøggild⁷,
C. Chasman¹, C. H. Christensen⁷, P. Christiansen⁷, J.Cibor⁴, R.Debbe¹,E.Enger,
J. J. Gaardhøje⁷,M. Germinario⁷, K. Hagel⁸, O. Hansen⁷, H. Ito¹, A. Jipa¹⁰, J. I. Jordre¹⁰, F. Jundt^{2,}
C.E.Jørgensen⁷, E. J. Kim¹¹, R.Karabowisz³, T. Kozik³, T.M.Larsen¹², J. H. Lee¹, Y. K.Lee⁵,
S. Lindal, G. Lystad, G. Løvhøjden², Z. Majka³, A. Makeev⁸, M. Mikelsen, M. Murray¹¹, J. Natowitz⁸,
B. Neuman¹¹, B.S.Nielsen⁷, D. Ouerdane⁷, R.Planeta³, F. Rami², C.Ristea¹⁰, O.Ristea¹⁰,
D. Roehrich⁹, B. H. Samset¹², D.Sandberg, S. J. Sanders¹¹, R.A.Sheetz¹,
P. Staszel³, T.S. Tveter¹², F.Videbæk¹, R. Wada⁸, Z. Yin⁹ and I. S. Zgura¹⁰

 ¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland, ⁴Institute of Nuclear Physics, Cracow, Poland ⁵Johns Hopkins University, Baltimore, USA, ⁶New York University, USA ⁷Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, Denmark ⁸Texas A&M University, College Station. USA, ⁹University of Bergen, Norway ¹⁰University of Bucharest, Romania, ¹¹University of Kansas, Lawrence,USA ¹² University of Oslo, Norway

- 53 people from 12 institutions, 5 Countries