Physics in Electron-Ion Collider Experiments IV: Nucleon 3-d Structure

Jian-ping Chen (陈剑平), Jefferson Lab, Virginia, USA Huada School on QCD 2016: QCD in the EIC Era, May 23 – June 3, 2016

- Unified Picture of Nucleon Structure: Wigner Distribution
- GPDs: 3-d (2-d spatial+1-d momentum) distributions
- TMDs:3-d momentum distributions
- Transversity and tensor charge
- SoLID program
- EIC program

Nucleon Spin Structure Study

 1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small

$$\Delta\Sigma = (12 + -9 + -14)\%!$$
 'spin crisis'

1990s: SLAC, SMC (CERN), HERMES (DESY)

$$\Delta\Sigma = 20-30\%, \qquad \frac{1}{2} = \frac{1}{2} \sum_{f} (q_f^+ - q_f^-) + L_q + \Delta G + L_g \text{ pital angular momentum}$$

gauge invariant $(1/2)\Delta\Sigma + Lq + J_G = 1/2$ Bjorken Sum Rule verified to <10% level

2000s: COMPASS (CERN), HERMES, RHIC-Spin, JLab, ...:
 ΔΣ ~ 30%; ΔG contributes, orbital angular momentum significant
 Large-x (valence quark) behavior; Moments and sum rules
 Needs 3-d structure information to complete the proton spin puzzle

Generalized Parton Distributions (GPDs)

X. Ji, D. Mueller, A. Radyushkin (1994-1997)

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

Unified View of Nucleon Structure

☐ Wigner distributions

3-D Structure I

Generalized Parton Distributions

3-D Imaging - Two Approaches

TMDs GPDs

2+1 D picture in **momentum space**

Bacchetta, Conti, Radici

- intrinsic transverse motion
- spin-orbit correlations- relate to OAM
- non-trivial factorization
- accessible in SIDIS (and Drell-Yan)

2+1 D picture in **impact-parameter space**

QCDSF collaboration

- collinear but long. momentum transfer
- indicator of OAM; access to Ji's total J_{q,q}
- existing factorization proofs
- DVCS, exclusive vector-meson production

Generalized Parton Distributions (GPDs)

X. Ji, D. Mueller, A. Radyushkin (1994-1997)

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

Description of Hadron Structure via Generalized Parton Distributions

The GPDs Define Nucleon Structure

known information on GPDs

forward limit: ordinary parton distributions

$$H^q(x,\xi=0,t=0)=q(x)$$
 unpolarized quark distribution $\tilde{H}^q(x,\xi=0,t=0)=\Delta q(x)$ polarized quark distribution E^q , \tilde{E}^q : do NOT appear in DIS

first moments: nucleon electroweak form factors

ξ independence : Lorentz invariance

Access GPDs through DVCS x-section & asymmetries

Hall A DVCS Experiment

Handbag Dominance at Modest Q²

$$\frac{d^4\sigma^+}{dx_BdQ^2d\phi dt} - \frac{d^4\sigma^-}{dx_BdQ^2d\phi dt} \quad [nb/GeV^4]$$

Twist 2 contribution

– – - Twist 3 contribution strongly suppressed

The Twist-2 term can be extracted accurately from the cross-section difference Dominance of twist-2 ⇒ handbag dominance ⇒ DVCS interpretation

Quark Angular Momentum

$$J^{q}(t) = \int_{-1}^{+1} dx x [H^{q}(x,\xi,t) + E^{q}(x,\xi,t)]$$

→ Access to quark orbital angular momentum

CLAS12 - DVCS/BH Target Asymmetry

Longitudinally polarized target

$$\Delta \sigma \sim \sin \phi \operatorname{Im} \{ F_1 H + \xi (F_1 + F_2) H ... \} d\phi$$

CLAS preliminary

3D Images of the Proton's Quark Content

M. Burkardt PRD 66, 114005 (2002)

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{-i\mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x, 0, -\mathbf{\Delta}_{\perp}^2).$$

b₁- Impact parameter transverse polarized target $u_X(x,\underline{b})$ u(x,b) $d_X(x,\underline{b})$ $d(x,b_{\underline{I}})$ quark flavor polarization Accessed in Single Spin Asymmetries. Needs:

Detailed differential images from nucleon's partonic structure

EIC: Gluon size from J/Ψ and ϕ electroproduction ($Q^2 > 10 \text{ GeV}^2$)

[Transverse distribution derived directly from t dependence]

Hints from HERA:

Area (q + q) Area (g)

Dynamical models predict difference:
pion cloud, constituent quark picture

 $q + \overline{q}$ singlet quarks gluons x < 0.1

EIC: singlet quark size from deeply virtual compton scattering

Weiss, Hyde, Horn

Fazio

EIC: strange and non-strange (sea) quark size from π and K production

Polarized DVCS @ EIC

GPD Study at EIC@HIAF

- Unique opportunity for DVMP (pion/Kaon)
 flavor decomposition needs DVMP
 energy reach Q² > 5-10 GeV², scaling region for exclusive light meson production
 (JLab12 energy not high enough to have clean light meson deep exclusive process)
- Significant increase in range for DVCS combination of energy and luminosity
- Other opportunities: vector meson, heavy flavors?

3-D Structure II

Transverse Momentum-Dependent Distributions

Leading-Twist TMD PDFs

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
nc	U	f_1		h_1^{\perp} \uparrow - \downarrow Boer-Mulders
Polarization	L		g ₁ Helicity	h_{1L}^{\perp} Long-Transversity
Nucleon	Т	f_{1T}^{\perp} \bullet - \bullet Sivers	g _{1T} Trans-Helicity	h_1 Transversity h_{1T}^{\perp} -
		51,510		Pretzelosity

TMDs

8 functions in total (at leading Twist)

Each represents different aspects of partonic structure

Each function is to be studied

Mulders, Tangerman (1995), Boer, Mulders (1998)

Access TMDs through Hard Processes

SIDIS

- Partonic scattering amplitude
- Fragmentation amplitude
- Distribution amplitude

$$f_{1T}^{\perp q}(\text{SIDIS}) = -f_{1T}^{\perp q}(\text{DY})$$

Tool: Semi-inclusive DIS (SIDIS)

Unpolarized TMDs Flavor P_T Dependence

SIDIS Results

From Form Factors to Transverse Densities

Unpolarized Transverse Densities

Flavor-dependence in form factors can be translated into flavor-dependence of transverse densities

Unpolarized TMD: Flavor P_T Dependence?

Flavor in transverse-momentum space

Is the up distribution wider or narrower than the down?

And the sea?

How wide are the distributions?

A. Bacchetta, Seminar @ Jlab, arXiv1309.3507 (2013)

Flavor P_T Dependence from Theory

■Chiral quark-soliton model (Schweitzer, Strikman, Weiss, JHEP, 1301 (2013) > sea wider tail than valanee

Indications from lattice QCD

Musch, Hagler, Negele, Schafer, PRD 83 (11)

Pioneering lattice-QCD studies hint at a down distribution being wider than up

•Flagmentation model, Matevosyan, Bentz, Cloet, Thomas, PRD85 (2012)

→ unfavored pion and Kaon wider than favored pion

Flavor P_T Dependence

First indications from experiments

no kaons, no sea, no *x-z* dependence

Conclusion: up is wider than down and favored wider than unfavored

A₁ P_T-dependence

arXiv:1003.4549

CLAS data suggests that width of g₁ is less than the width of f₁

Leading-Twist TMD PDFs

		Quark polarization			
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
nc	U	f_1 •		h_1^{\perp} \uparrow – \downarrow Boer-Mulders	
Polarization	L		g ₁ Helicity	h _{1L} Long-Transversity	
Nucleon	Т	f_{1T}^{\perp} \bullet $ \bullet$ Sivers	g _{1T} Trans-Helicity	h_1 h_1 h_{1T} h_{1T} h_{1T} h_{1T} h_{1T} h_{1T} h_{1T}	

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$

$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

$$A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}$$

$$A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$$

$$A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$$

COMPASS/HERMES: Sivers Asymmetries and Extraction of Sivers Function

JLab 6 GeV Experiment E06-010

$$^{3}He^{\uparrow}(\vec{e},e'\pi^{\pm})X$$

 $^{3}He^{\uparrow}(\vec{e},e'K^{\pm})X$

- First measurement on n (³He)
- Transversely Polarized ³He Target
- Polarized Electron Beam, 5.9 GeV
- Results published in 7 PRL/PRC papers:
- ✓ π^{+-} Collins/Sivers asymmetries: PRL 107:072003(2011)
- \checkmark π^{+-} worm-gear asymmetries: PRL 108, 052001 (2012)
- \checkmark π^{+-} pretzelosity asymmetries: PRC 90 5, 055209(2014)
- ✓ K^{+-} Collins/Sivers asymmetries:PRC 90 5, 05520 (2014)
- ✓ Inclusive hadron SSA: PRC 89, 042201 (2014)
- ✓ Inclusive electron SSA: PRL 113, 022502 (2014)
- ✓ Inclusive hadron DSA: PRC 92, 015207 (2015)

³He (n) Target Single-Spin Asymmetry in SIDIS

E06-010 collaboration, X. Qian at al., PRL 107:072003(2011)

$$n^{\uparrow}(e,e'h), h = \pi^+, \pi^-$$

neutron Collins SSA small Non-zero at highest x for π +

neutron Sivers SSA: negative for $\pi^{+,}$ Agree with Torino Fit

Blue band: model (fitting) uncertainties **Red band**: other systematic uncertainties

Asymmetry A_{LT} Result

J. Huang et al., PRL. 108, 052001 (2012).

To leading twist:

$$A_{\mathrm{LT}}^{\cos(\phi_h - \phi_s)} \propto F_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

Dominated by L=0 (S) and L=1 (P) interference

- neutron A_{LT} : Positive for π -
- Consist w/ model in signs, suggest larger asymmetry

Worm-Gear Trans helicity

$\mathbf{N}^{\mathbf{q}}$	U	L	T
U	\mathbf{f}_1		\mathbf{h}_1^\perp
L		\mathbf{g}_1	$\mathbf{h}_{1\mathbf{L}}^{\perp}$
\mathbf{T}	f_{1T}^{\perp}	(g _{1T})	$\mathbf{h}_1 \; \mathbf{h}_{1T}^{\perp}$

Status of Transversity/TMD Study

- Large single spin asymmetry in pp->πX (Fermi, RHIC-spin)
- Collins Asymmetries
 - sizable for the *proton* (HERMES and COMPASS) large at high x, π and π + has opposite sign unfavored Collins fragmentation as large as favored (opposite sign)?
 - consistent with 0 for the deuteron (COMPASS)
- Sivers Asymmetries
 - non-zero for π^+ from *proton*, HERMES and COMPASS data, Q² dependence
 - large for K⁺?
- Collins fragmentation functions from Belle/BaBar
- Global Fits/models
- Very active theoretical and experimental efforts

 JLab , RHIC-spin, COMPASS, Belle/BaBar, J-PARC, EIC, ...
- First neutron measurement from Hall A 6 GeV (E06-010)
- SoLID with polarized n and p at JLab 12 GeV
 Unprecedented precision with high luminosity and large acceptance

Planned TMD Studies with JLab 12/SoLID

Transverse Spin (Transversity) and Tensor Charge TMDs

Precision Study of TMDs: JLab 12 GeV, EIC

- Explorations: HERMES, COMPASS, RHIC-spin, JLab6,...
- From exploration to precision study
 JLab12: valence region; EIC: sea and gluons
- Transversity: fundamental PDFs, tensor charge
- TMDs: 3-d momentum structure of the nucleon
 - → information on quark orbital angular momentum
 - → information on QCD dynamics
- Multi-dimensional mapping of TMDs
- Precision → high statistics
 - high luminosity and large acceptance

Overview of SoLID

Solenoidal Large Intensity Device

- Full exploitation of JLab 12 GeV Upgrade
 - \rightarrow A Large Acceptance Detector AND Can Handle High Luminosity (10^{37} - 10^{39}) Take advantage of latest development in detectors , data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ ψ
- •5 highly rated experiments approved
 Three SIDIS experiments, one PVDIS, one J/ ψ production (+ 3 run group experiments)
- •Strong collaboration (250+ collaborators from 70+ institutes, 13 countries)
 Significant international contributions (Chinese collaboration)

SoLID-Spin: SIDIS on ³He/Proton (a) 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He, rating A

E12-11-007: Single and Double Spin Asymmetries on ³He, rating A

E12-11-108: Single and Double Spin Asymmetries on Transverse Proton, rating A

Key of SoLID-Spin program:

Large Acceptance

- + High Luminosity
- → 4-D mapping of asymmetries
- → Tensor charge, TMDs ...
- → Lattice QCD, QCD Dynamics, Models.

E12-10-006/E12-11-108, Both Approved with "A" Rating Mapping of Collins(Sivers) Asymmetries with SoLID

Both π+ and π-

• Precision Map in © 1.2 region

$$x(0.05-0.65)$$

 $z(0.3-0.7)$

$$Q^2(1-8)$$

$$P_{T}(0-1.6)$$

 <10% d quark tensor charge

Tensor Charge

Definition

$$\langle P, S | \bar{\psi}_q i \sigma^{\mu\nu} \psi_q | P, S \rangle = \delta_T q \bar{u}(P, S) i \sigma^{\mu\nu} u(P, S) \ \delta_T q = \int_0^1 \left[h_1^q(x) - h_1^{\bar{q}}(x) \right] dx$$

A fundamental QCD quantity. Matrix element of local operators. Moment of transversity distribution. Valence quark dominant.

Calculable in lattice QCD.

SoLID impact

CP violation in the Standard Model

Flavor changing weak current

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

$$J^{\mu} = (\overline{u} \ \overline{c} \ \overline{t}) \ \frac{\gamma_{\mu}(1-\gamma^{5})}{2} \left(\begin{array}{cccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right) \left(\begin{array}{c} d \\ s \\ b \end{array}\right) \quad \text{Mass}$$
 eigenstates

- 3 mixing angles and 1 complex phase δ_{CKM} $-\delta_{CKM}$ ≠0, CP violation
- The θ term in QCD lagrangian

$$\begin{split} L_{QCD} &= -\frac{1}{4} G^{\alpha}_{\mu\nu} G^{\alpha\mu\nu} - \sum_{} \bar{\psi}_{n} [i\gamma^{\mu}\partial_{\mu} + g\gamma^{\mu} G^{\alpha}_{\mu} T^{\alpha} + m_{n}] \psi_{n} + \theta \frac{g^{2}}{32\pi^{2}} G^{\alpha\mu\nu} \tilde{G}^{\alpha}_{\mu\nu} \\ & \bullet \text{ If } \theta \neq 0, \quad G^{\alpha\mu\nu} \tilde{G}^{\alpha}_{\mu\nu} \text{ violates P \& T} \qquad \tilde{G}^{\alpha}_{\mu\nu} \equiv \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} G^{\alpha\rho\sigma} \end{split}$$

Neutron Electric Dipole Moment (EDM)

Current limit (10⁻²⁶ θ) e.cm , next generation of experiments aim at (10⁻²⁸ θ) e.cm

- If neutron possesses EDM, in an electric field, Hamiltonian $H = -d_n \vec{\sigma} \cdot \vec{E}$
 - changes sign under T (P) symmetry operation
- d_n is more sensitive to θ than to δ_{CKM}
- Neutron EDM ~ $O(10^{-16} \theta)$ e.cm (various model predictions)

Quark EDM appears only at the three-loop level

Tensor Charge and Neutron EDM

Electric Dipole Moment

Tensor charge and EDM

$$d_n = \delta_T u \, d_u + \delta_T d \, d_d + \delta_T s \, d_s$$

current neutron EDM limit

$$|d_n| < 2.9 \times 10^{-26} \, e \cdot \text{cm}$$

TMDs and Orbital Angular Momentum

Pretzelosity ($\Delta L=2$), Worm-Gear ($\Delta L=1$),

Sivers: Related to GPD E through Lensing Function

TMDs: Access Quark Orbital Angular Momentum

- TMDs: Correlations of transverse motion with quark spin and orbital motion
- Without OAM, off-diagonal TMDs=0, no direct model-independent relation to the OAM in spin sum rule yet
- Sivers Function: QCD lensing effects
- In a large class of models, such as light-cone quark models

Pretzelosity: $\Delta L=2$ (L=0 and L=2 interference, L=1 and -1 interference)

Worm-Gear: Δ L=1 (L=0 and L=1 interference)

SoLID with trans polarized $n/p \rightarrow quantitative$ knowledge of OAM

 \mathbf{T}

 \mathbf{h}_1^{\perp}

SoLID Impact on Pretzelosity

SoLID transversely polarized ³He, E12-10-006.

95% C.L.

Angular Momentum (1)

OAM and pretzelosity:

model dependent

$$L_z = -\int dx \, d^2 \, k_{\perp} \, \frac{k_{\perp}^2}{2 \, M_p^2} \, h_{1 \, T}^{\perp} (x, k_{\perp}^2)$$

J. She et al., PR D 79, 058008 (2009).

SoLID impact:

Worm-gear Functions

 g_{1T}

 \mathbf{T}

- Dominated by real part of interference between L=0 (S) and L=1 (P) states
- No GPD correspondence
- Exploratory lattice QCD calculation:

Ph. Hägler et al, EPL 88, 61001 (2009)

0.4

Light-Cone CQM by B. Pasquini B.P., Cazzaniga, Boffi, PRD78, 2008

 $g_{1T}^{(1)}$

S-P int.

$$A_{LT} \sim g_{1T}(x)D_1(z)$$

$$A_{UL} \sim h_{1L}^{\perp}(x) \otimes H^{\perp}_{1}(z)$$

Angular Momentum (2)

Sivers and GPD *E*:

model dependent

$$f_{1T}^{\perp(0)}(x, Q_0^2) = -L(x)E(x, 0, 0, Q_0^2)$$

$$L(\mathbf{x}) = \frac{\mathbf{K}}{(1-\mathbf{x})^{\eta}}$$
 lensing function

A. Bacchetta et al., PR L 107, 212001 (2011).

K and η are fixed by anomalous magnetic moments κ^p and κ^n .

$$J = \frac{1}{2} \int dx \, x \, [H(x, 0, 0) + E(x, 0, 0)]$$

SoLID:

SoLID Impact on Sivers

M. Anselmino et al., EPJ A39, 89 (2009).

SoLID transversely polarized ³He, E12-10-006. (sea quark contribution fixed)

95% C.L.

Image the Transverse Momentum of the Quarks

Only a small subset of the (x,Q^2) landscape has been mapped here.

An EIC with good luminosity & high transverse polarization is the optimal tool to to study this!

Exact k_T distribution presently essentially unknown!

What do we learn from 3D distributions?

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

The slice is at:

$$x = 0.1$$

Low-x and high-x region is uncertain
JLab 12 and EIC will contribute

No information on sea quarks

Picture is still quite uncertain

What do we learn from 3D distributions?

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

The slice is at:

$$x = 0.1$$

Low-x and high-x region is uncertain
JLab 12 and EIC will contribute

No information on sea quarks

In future we will obtain much clearer picture

EIC (11x60) Projection: $p(e,e'\pi^+)$ (Sivers/Collins)

Imaging in 3-d momentum space

EIC@HIAF Projections for SIDIS Asymmetry π^+

EIC@HIAF reach high precision similar to SoLID at lower x, higher Q2 region

Green (Blue) Points: SoLID projections for polarized NH₃ (³He/n) target Luminosity: 10³⁵ (10³⁶) (1/cm²/s); Time: 120 (90) days

Black points: EIC@HIAF projections for 3 GeV e and 12 GeV p

Luminosity: 4 x 10³² /cm²/s; Time: 200 days

Summary on TMD Program

- Exploratory results from 6 GeV neutron experiment
- Unprecedented precision multi-d mapping of SSA in valence quark region with SoLID at 12 GeV JLab
- Both polarized n (³He) and polarized proton
 - Three "A" rated experiments approved
 - + two run-group experiments
- Combining with the world data (fragmentation functions)
 - extract transversity for both u and d quarks
 - determine tensor charges -> LQCD, EDMs
 - learn quark orbital motion and QCD dynamics
 - 3-d imaging
- Global efforts (experimentalists and theorists), global analysis
 - much better understanding of 3-d nucleon structure and QCD
- Long-term future: EIC to map sea and gluon SSAs

Summary

Nucleon Structure Study: Discoveries and Surprises
 Understand strong interaction/nucleon structure: remains a challenge

Highlights

Precision EM form factors, proton radius

Nucleon spin-flavor structure (unpolarized and polarizd, valence, sea)

3-d Structure: GPDs

3-d Structure: TMDs, SoLID program

 EIC opens up a new window to study/understand nucleon structure, especially the sea quarks and gluons

Exciting new opportunities → lead to breakthroughs?