Physics in Electron-Ion Collider Experiments III: Nucleon Spin Structure

Jian-ping Chen (陈剑平), Jefferson Lab, Virginia, USA Huada School on QCD 2016: QCD in the EIC Era, May 23 – June 3, 2016

- Spin Milestone and "Spin Crisis"
- A₁ at high-x (valence quark region)
- Spin-flavor structure and gluon polarization
- Moments of spin structure: sum rules and polarizabilties
- g₂ and higher-twist effects (quark-gluon correlations)

Introduction

Spin Milestone and "Spin Crisis"

Spin Milestones (I)

- Nature: (www.nature.com/milestones/milespin)
 - 1896: Zeeman effect (milestone 1)
 - > 1922: Stern-Gerlach experiment (2)
 - ➤ 1925: Spinning electron (Uhlenbeck/Goudsmit)(3)
 - > 1928: Dirac equation (4)
 - Quantum magnetism (5)
 - > 1932: Isospin(6)
 - > 1935: Proton anomalous magnetic moment
 - > 1940: Spin-statistics connection(7)
 - > 1946: Nuclear magnetic resonance (NMR)(8)
 - > 1950s: Development of magnetic devices (9)
 - > 1950-51: NMR for chemical analysis (10)
 - ➤ 1951: Einstein-Podolsky-Rosen argument in spin variables(11)
 - > 1964: Kondo Effect (12)
 - > 1971: Supersymmetry(13)
 - > 1972:Superfluid helium-3 (14)

Pauli and Bohr watch a spinning top

Spin Milestones (II)

- ➤ 1973: Magnetic resonance imaging(15)
- ➤ 1975-76:NMR for protein structure determination (16)
- > 1978: Dilute magnetic semiconductors (17)
- > 1980s: "Proton spin crisis or puzzle"
- ➤ 1988: Giant magnetoresistance(18)
- > 1990: Functional MRI (19)
- Proposal for spin field-effect transistor (20)
- ➤ 1991: Magnetic resonance force microscopy (21)
- 1996: Mesocopic tunnelling of magnetization (22)
- > 1997: Semiconductor spintronics (23)
- > (Spin-polarized suprecurrents for spintronics, 1/2011)
- ➤ 2000s: "Nucleon transverse spin puzzle"?
- ?: More puzzles in nucleon spin?
- **>**
- ?: Breakthroughs in nucleon spin/nucleon structure study?
- **>**
- ?: Applications of nucleon spin physics?

Anomalous Magnetic Moment (of Proton)

1933 Otto Stern
 Magnetic moment of the proton

```
-- expected: \mu_p=eħ/2m_pc (since S_p=1/2)

-- measured: \mu_p=eħ/2m_pc(1+\kappa_p)! first 'spin crisis'

anomalous magnetic moment (a.m.m) \kappa_p= 1.5 +- 10%
```

 1943 Nobel Prize awarded to Stern for 'development of the molecular beam method' and 'the discovery of the magnetic moment of protons'

```
now: \kappa_p=1.792847386 +- 0.000000063 and \kappa_n=-1.91304275 +- 0.00000045
```

A.M.M and Its Implications

Anomalous magnetic moment is an evidence for an internal structure

- → finite size
- Finite size → Form factors

Dirac form factor: normal relativistic effect

Pauli form factor: relate to a.m.m. part

- Finite size ← → Excitation spectrum
- GDH Sum Rule

relates a.m.m. to integral of excitation spectrum

A.M.M < -- > related to GPDs, TMDs (quark orbital angular momentum)

Polarized Deep Inelastic Electron Scattering

$$x = \frac{Q^2}{2M\nu}$$
 Fraction of nucleon momentum carried by the struck quark

 Q^2 = 4-momentum transfer of the virtual photon, ν = energy transfer, θ = scattering angle

All information about the nucleon vertex is contained in

 F_2 and F_1 the unpolarized (spin averaged) structure functions,

and

 $g_{\!\!1}$ and $g_{\!\!2}$ the spin dependent structure functions

Cross Section & Spin Structure Functions

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2 \cos^2\frac{\theta}{2}}{Q^4} \left[\frac{F_2}{\nu} + 2\frac{F_1}{M} \tan^2\frac{\theta}{2} \right]$$

$$\frac{d^2\sigma}{dE'd\Omega} (\downarrow \uparrow \uparrow - \uparrow \uparrow \uparrow \uparrow) = \frac{4\alpha^2}{MQ^2} \frac{E'}{\nu E} \left[(E + E' \cos\theta)g_1 - \frac{Q^2}{\nu}g_2 \right]$$

$$\frac{d^2\sigma}{dE'd\Omega} (\downarrow \Rightarrow - \uparrow \Rightarrow) = \frac{4\alpha^2 \sin\theta}{MQ^2} \frac{E'^2}{E} \frac{1}{\nu^2} (\nu g_1 + 2Eg_2)$$

Quark-Parton Model

$$F_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(x) \qquad g_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} \Delta q_{i}(x)$$

$$f_{i}(x) = q_{i}^{\uparrow}(x) + q_{i}^{\downarrow}(x)$$

$$\Delta q_{i}(x) = q_{i}^{\uparrow}(x) - q_{i}^{\downarrow}(x)$$

- $q_i\left(x
 ight)$ quark momentum distributions of flavor i
- $\uparrow(\downarrow)$ parallel (antiparallel) to the nucleon spin

$$F_2 = 2xF_1 \qquad g_2 = 0$$

$$A_1(x) = \frac{g_1(x)}{F_1(x)} = \frac{\sum \Delta q_i(x)}{\sum f_i(x)}$$

DIS - Surprises with Spin

The sum of Quark Spins contribute little to the proton spin, and strange quarks are negatively polarized.

DIS - Surprises with Spin

For the proton,

Known from weak neutron to proton decay

which becomes a prediction if $\Delta_1 s = 0$

Nucleon Spin Structure Study

1980s: EMC (CERN) + early SLAC quark contribution to proton spin is very small ΔΣ = (12+-9+-14)%! 'spin crisis'
1990s: SLAC, SMC (CERN), HERMES (DESY) ΔΣ = 20-30%, the rest: gluon and quark orbital angular momentum (½)ΔΣ +Lq + ΔG +L_G = 1/2

gauge invariant $(1/2)\Delta\Sigma + Lq + J_G = 1/2$ Bjorken Sum Rule verified to <10% level

2000s: COMPASS (CERN), HERMES, RHIC-Spin, JLab, ...:
 ΔΣ ~ 30%; ΔG contributes, orbital angular momentum significant
 Large-x (valence quark) behavior; Moments and sum rules
 Needs 3-d structure information to complete the proton spin puzzle

Reviews: Sebastian, Chen, Leader, arXiv:0812.3535, PPNP 63 (2009) 1; J. P. Chen, arXiv:1001.3898, IJMPE 19 (2010) 1893

Polarized Structure functions

Polarized Parton Distributions

Spin Structure Experiments

E80, E130	$\vec{\mathrm{e}}\ \vec{\mathrm{p}}$	$\leq 20~{\rm GeV}$
EMC	$ec{\mu}\ ec{\mathrm{p}}$	100–200 GeV
E142, 143	$\vec{e} \ \vec{p}, \vec{n}, \vec{d}$	$\leq 28 \mathrm{GeV}$
SMC	$\vec{\mu} \ \vec{p}, \vec{d}$	100, 190 GeV
E154, 155	$\vec{e} \ \vec{p}, \vec{n}, \vec{d}$	$\leq 50~\mathrm{GeV}$
HERMES	$\vec{e} \ \vec{p}, \vec{n}, \vec{d}$	27.5 GeV
COMPASS	$\vec{\mu} \ \vec{\mathrm{p}}, \vec{\mathrm{d}}$	160 GeV
HALL A	$\vec{\mathrm{e}}\ \vec{\mathrm{n}}$	6 GeV
CLAS	$\vec{\mathrm{e}}\ \vec{\mathrm{p}}, \vec{\mathrm{d}}$	6 GeV

	1970	1980	1990	2000	2010
SLAC	E80	E130	E142/3	E154/5	
CERN		EM	IC SMC	СОМР	ASS
DESY			HER	RMES	
JLab			c	LAS/HA	LL-A

SLAC - End Station A

Jlab - CLAS, Hall A

Polarized proton/ deuteron target

- Polarized NH₃/ND₃ targets
- Used in Hall B and Hall C (also at SLAC)
- Dynamical Nuclear Polarization
- ~ 90% for p~ 40% for d
- Luminosity ~ 10³⁵

4-94 7656A1

JLab polarized ³He target

- ✓ longitudinal, transverse and vertical
- ✓ Luminosity=10³⁶ (1/s) (highest in the world)
- ✓ High in-beam polarization ~ 60%
- ✓ Effective polarized neutron target
- ✓ 13 completed experiments
 7 approved with 12 GeV (A/C)

Polarized ³He Target

- ► High Luminosity polarize target: $L(n) = 10^{36}$ cm⁻² s⁻¹(achieved), 10^{37} cm⁻² s⁻¹ (R&D)
- Compact size: No cryogenic support needed

Performance of ³He Target

- High luminosity: $L(n) = 10^{36}$ cm⁻² s⁻¹ (being upgraded to 10^{37})
- Polarization in all 3 directions (L, T, V)
- Record high in-beam ~ 60% polarization
- Fast spin flip (every 20 minutes)

History of Figure of Merit of Polarized ³He Target

Medical Imaging

³He Spin density MRI

Courtesy of W. Heil, Univ. Mainz

Inhaled Bronchodilator Asymptomatic Asthmatic

Experiment Summary $(Q^2 > 0)$

<u>, </u>	<u> </u>	*********	<u> </u>
Observable	H target	D target	³ He target
$g_1, g_2, \Gamma_1 \& \Gamma_2$	SLAC	SLAC	SLAC
at high Q^2			JLAB E97-117
	JLAB SANE		JLAB E01-012
			JLAB E06-014
g_1 & Γ_1 at high Q^2	SMC	SMC	
COMPASS	HERMES	HERMES	HERMES
RHIC-Spin	JLAB EG1	JLAB EG1	
Γ_1 & Γ_2 at low Q^2	JLab RSS	JLab RSS	JLab E94-010
			JLab E97-103
Γ_1 at low Q^2	SLAC	SLAC	
	HERMES	HERMES	HERMES
	JLAB EG1	JLAB EG1	
$\Gamma_1, Q^2 << 1 \text{ GeV}^2$	JLab EG4	JLab EG4	JLab E97-110
Γ_2 , $Q^2 << 1 \text{ GeV}^2$	ILab E08-027		JLab E97-110

 $Q^2 = 0$

Mainz, Bonn, LEGS, HIGS

Select Highlights in Nucleon Spin Study I

 g_1/A_1 at High-x: Valence Quark

Polarized quarks as x-->1

• SU(6) symmetry:

$$A_1^p = 5/9$$
 $A_1^n = 0$ d/u=1/2

- Broken SU(6) via scalar diquark dominance

Broken SU(6) via helicity conservation

Note that $\Delta q/q$ as x--> 1 is more sensitive to spin-flavor symmetry breaking effects than A_1

World data for A₁

JLab E99117: **Precision Measurement of A₁ⁿ at High-x**

PRL 92, 012004 (2004), PRC 70, 065207 (2004)

Physics News Update, Science Now Science News, Physics Today Update

pQCD with Quark Orbital Angular Momentum

Projections for JLab at 11 GeV

Select Highlights in Nucleon Spin Study II

Spin-Flavor Structure Gluon Polarization

RHIC-Spin W program: Polarized Sea Quark

Impact of new DSSV global fit result

RHIC Spin Collaboration (2012)

 From recent DSSV++ result incl. STAR A_L data:

$$\int_{0.05}^{1} \Delta \bar{u}(x, Q^2) dx \approx 0.02$$

$$\int_{0.05}^{1} \Delta \bar{d}(x, Q^2) dx \approx -0.05$$

Tagging the quark flavor

semi-inclusive deep-inelastic scattering

$$Q^{2} \equiv -q^{2}$$

$$\nu \equiv \frac{Pq}{M} \stackrel{lab}{=} E - E'$$

$$y \equiv \frac{Pq}{Pk} \stackrel{lab}{=} \frac{\nu}{E}$$

$$W^{2} \equiv M^{2} + 2M\nu - Q^{2}$$

$$x_{B} \equiv \frac{Q^{2}}{2Pq}$$

$$z \equiv \frac{PP_{h}}{Pq} \stackrel{lab}{=} \frac{E_{h}}{\nu}$$

$$P_{h\perp} = \frac{|\vec{q} \times \vec{P_{h}}|}{|\vec{q}|}$$

$$\sigma^{ep \to eh} = \sum_{q} DF^{p \to q}(x_B, p_T^2, Q^2) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, k_T^2, Q^2)$$

distribution function (DF): distribution of quarks in nucleon

 p_T : transverse momentum of struck quark

fragmentation function (FF): fragmentation of struck quark into final-state hadron k_T : transverse momentum of fragmenting quark35

Quark helicity distribution

proportional to square of quark electric charge favored fragmentation

$$u \to \pi^+ = |u\bar{d}>$$

 $d \to \pi^- = |\bar{u}d>$

unfavored fragmentation

$$d \to \pi^+ = |u\bar{d}>$$

$$u \to \pi^- = |\bar{u}d>$$

FF in the collinear case

Very good knowledge of PDFs and FFs is a key element for a precise determination of polarized quantities, e.g. polarization of quarks in

> Longitudinally polarized nucleon

$$A_{LL}^{h}(x,z) = \frac{\sum_{f} \Delta q_{f}(x) D_{q_{f}}^{h}(z)}{\sum_{f} q_{f}(x) D_{q_{f}}^{h}(z)}$$

unpolarized PDF

$$\int d^2 \mathbf{k}_{\perp} f_1^q(x, k_{\perp}) = f_1^q(x)$$
$$\int d^2 \mathbf{p}_{\perp} D_1^q(z, p_{\perp}) = D_1^q(z)$$

Large uncertainties in the strange sector

polarized PDF

Flavor decomposition with SIDIS

 Δu and Δd at JLab 11 GeV

Polarized Sea

Sea Quark Polarization

• Spin-Flavor Decomposition of the Light Quark Sea

Access requires s ~ 100-1000 (and good luminosity)

100 days, $L = 10^{33}$, s = 1000

Many models predict $\Delta u > 0$, $\Delta d < 0$

Gluon helicity distribution

select high- $P_{h\perp}$ hadrons

photon-gluon fusion

A. Airapetian et al., JHEP 08 (2010) 130

RHIC-Spin: Gluon Polarization

Impact on ∆g from RHIC data

- DSSV: Original global analysis incl. first RHIC results (Run 5/6)
- DSSV*: New COMPASS inclusive and semi-inclusive results in addition to Run 5/6 RHIC updates
- DSSV NEW FIT: Strong impact on $\Delta g(x)$ with RHIC run 9 results: $0.20^{+0.06}_{-0.07}$ 90% C.L. for 0.05 < x
- Similar conclusion by independent global analysis of NNPDF: $0.23^{+0.07}_{-0.07}$ for 0.05 < x < 0.5

"...better small-x probes are badly needed."

EIC: Are the Gluons Polarized?

A Polarized EIC:

- Tremendous improvement on ∆G
- Also improvement in ΔΣ
- Spin Flavor decomposition of the Light Quark Sea

Select Highlights of Nucleon Spin Study III: Spin Sum Rules and Moments of SSFs

Sum Rules

Moments of Spin Structure Functions

Global Property

Bjørken Sum Rule

$$\Gamma_1^p(Q^2) - \Gamma_1^n(Q^2) = \int \{g_1^p(x, Q^2) - g_1^n(x, Q^2)\} dx = \frac{1}{6}g_A C_{NS}$$

 g_A : axial vector **coupling constant** from neutron β -decay

 C_{NS} : Q²-dependent QCD corrections (for flavor non-singlet)

- A fundamental relation relating an integration of spin structure functions to axial-vector coupling constant
- Based on Operator Product Expansion within QCD or Current Algebra
- Valid at large Q² (higher-twist effects negligible)
- Data are consistent with the Bjørken Sum Rule at 5-10 % level

Gerasimov-Drell-Hearn Sum Rule

Circularly polarized photon on longitudinally polarized nucleon

$$\int_{v_{in}}^{\infty} \left(\sigma_{V2}(v) - \sigma_{3/2}(v) \right) \frac{dv}{v} = -\frac{2\pi^2 \alpha_{EM}}{M^2} \kappa^2$$

- A fundamental relation between the nucleon spin structure and its anomalous magnetic moment
- Based on general physics principles
 - Lorentz invariance, gauge invariance → low energy theorem
 - unitarity → optical theorem
 - casuality → unsubtracted dispersion relation applied to forward Compton amplitude
- First measurement on proton up to 800 MeV (Mainz) and up to 3 GeV (Bonn) agree with GDH with assumptions for contributions from un-measured regions New measurements on p, d and ³He from LEGS, MAMI(2), ...

Generalized GDH Sum Rule

- Many approaches: Anselmino, Ioffe, Burkert, Drechsel, ...
- Ji and Osborne (J. Phys. G27, 127, 2001):

Forward Virtual-Virtual Compton Scattering Amplitudes: $S_1(Q^2, v)$, $S_2(Q^2, v)$

Same assumptions: no-subtraction dispersion relation optical theorem (low energy theorem)

Generalized GDH Sum Rule

$$S_1(Q^2) = 4 \int_{el}^{\infty} \frac{G_1(Q^2, v) dv}{v}$$

Why is $I^{GDH}(Q^2)$ is interesting?

One of the few opportunities to "zoom out" from tiny length scales (DIS) to large length scales

Connecting GDH with Bjorken Sum Rules

- Q²-evolution of GDH Sum Rule provides a bridge linking strong QCD to pQCD
 - Bjorken and GDH sum rules are two limiting cases

```
High Q<sup>2</sup>, Operator Product Expansion : S_1(p-n) \sim g_A \rightarrow Bjorken Q^2 \rightarrow 0, Low Energy Theorem: S_1 \sim \kappa^2 \rightarrow GDH
```

- High Q² (> ~1 GeV²): Operator Product Expansion
- Intermediate Q² region: Lattice QCD calculations
- Low Q² region (< ~0.1 GeV²): Chiral Perturbation Theory

Calculations: $HB\chi PT$: Ji, Kao, Osborne, Spitzenberg, Vanderhaeghen $RB\chi PT$: Bernard, Hemmert, Meissner

Reviews: Chen, Deur, Meziani, Mod. Phy. Lett. A 20, 2745 (2005) Chen, Int. J. Mod. Phys. E19, 1893 (2010).

Moments of g_1^p : Γ_1^p (Before EG4)

Total Quark Contribution to Proton Spin (at high Q²)

Twist expansion at intermediate Q², LQCD, ChPT at low Q²

EG1b, **Phys.Lett. B672**, **12 (2009)**, **EG1a**, **PRL 91**, **222002 (2003)** Spokespersons: V. Burkert, D. Crabb, G. Dodge,

EG4 Preliminary Results on Proton g₁ Moment

First Moment of g_1^n : Γ_1^n

E94-010, PRL 92 (2004) 022301 E97-110, preliminary EG1a, from d-p

Bjorken Sum: Γ_1 of p-n

A. Deur, et al.

EG1b, PRD 78, 032001 (2008)

E94-010 + EG1a: PRL 93 (2004) 212001

Bjorken Sum (p-n)

•Low Q^2 : test of χ pt calculations

Effective Coupling Extracted from Bjorken Sum

A. Deur, V. Burkert, J. P. Chen and W. Korsch

PLB 650, 244 (2007) and PLB 665, 349 (2008)

Select Highlights of Nucleon Spin Study IV: Second Spin Structure Function g2

g₂ Moments: Burkhardt - Cottingham Sum Rule

Higher moments: d₂, Color Polarizability

g_2 : twist-3, q-g correlations

experiments: transversely polarized target
 SLAC E155x, (p/d)
 JLab Hall A (n), Hall C (p/d)

• g_2 leading twist related to g_1 by Wandzura-Wilczek relation

$$g_{2}(x,Q^{2}) = g_{2}^{WW}(x,Q^{2}) + \overline{g}_{2}(x,Q^{2})$$

$$g_{2}^{WW}(x,Q^{2}) = -g_{1}(x,Q^{2}) + \int_{V}^{1} g_{1}(y,Q^{2}) \frac{dy}{y}$$

• g_2 - g_2^{WW} : a clean way to access twist-3 contribution quantify q-q correlations

Proton g_1 and g_2

Precision Measurement of $g_2^n(x,Q^2)$: Search for Higher Twist Effects

- Measure higher twist → quark-gluon correlations.
- Hall A Collaboration, K. Kramer et al., PRL 95, 142002 (2005)

BC Sum Rule

$$\Gamma_2 = \int_0^1 g_2(x) dx = 0$$

BC satisfied w/in errors for JLab Proton 2.8 σ violation seen in SLAC data

BC satisfied w/in errors for Neutron (But just barely in vicinity of Q²=1!)

BC satisfied w/in errors for ³He

Color Polarizability (Lorentz Force): d₂

• 2nd moment of g_2 - g_2^{WW}

d₂: twist-3 matrix element

$$d_2(Q^2) = 3 \int_0^1 x^2 [g_2(x, Q^2) - g_2^{WW}(x, Q^2)] dx$$
$$= \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

 d_2 and g_2 - g_2 ^{WW}: clean access of higher twist (twist-3) effect: q-g correlations

Color polarizabilities χ_E, χ_B are linear combination of d_2 and f_2

Provide a benchmark test of Lattice QCD at high Q²

Avoid issue of low-x extrapolation

Relation to Sivers and other TMDs

$d_2(Q^2)$

d₂ⁿ Result from JLab E06-014

JLab 12 Projection of d_2^n

Higher Moments @ low Q²: Generalized Spin Polarizabilities

• generalized forward spin polarizability γ_0 generalized L-T spin polarizability δ_{LT}

$$\gamma_0(Q^2) = \left(\frac{1}{2\pi^2}\right) \int_{v_0}^{\infty} \frac{K(Q^2, v)}{v} \frac{\sigma_{TT}(Q^2, v)}{v^3} dv$$

$$= \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1(Q^2, x) - \frac{4M^2}{Q^2} x^2 g_2(Q^2, x)] dx$$

$$\delta_{LT}(Q^2) = \left(\frac{1}{2\pi^2}\right) \int_{v_0}^{\infty} \frac{K(Q^2, v)}{v} \frac{\sigma_{LT}(Q^2, v)}{Qv^2} dv$$

$$= \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1(Q^2, x) + g_2(Q^2, x) dx]$$

CLAS Proton Spin Polarizability γ₀^p

EG1b, Prok et al.
 PLB 672,12 (2009)

Large discrepancies with ChPT

Only longitudinal data, model for transverse (g₂)

 γ_0 sensitive to resonance

Neutron Spin Polarizabilities and the δ_{LT} Puzzle

$$\gamma_0 = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 - \frac{4M^2}{Q^2} x^2 g_2 \right]$$

$$\delta_{LT} = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 + g_2 \right]$$

 δ_{LT} not sensitive to $\Delta,$ one of the best quantities to test χPT

E94-010, PRL 93: 152301 (2004)

Heavy Baryon xPT Calculation

Kao, Spitzenberg, Vanderhaeghen PRD 67:016001(2003)

Failure of xPT?

Relativistic Baryon xPT

Bernard, Hemmert, Meissner PRD 67:076008(2003)

Theoretical Developments and the δ_{LT} Puzzle

HBχPT: recent: Lensky,
 Alarcon & Pascalutsa,
 PRC 90 055202 (2014)

RB χ PT: properly including Δ contribution, Bernard et al., PRD 87 (2013)

 δ_{LT}

Spin Polarizabilities: E97-110 and E94-010 results

- Significant disagreement between data and both ChPT calculations for δ_{LT}
- Good agreement with MAID model predictions

E08-027: g_2^p at low Q^2

LT Spin Polarizability

BC Sum Integral Γ_2

Main goals:

- 1) Test Chiral PT calculations: large discrepancy for neutron δ_{LT}
- 2) BC Sum Rule: violation suggested for proton at large Q², ok for neutron
- 3) Input to Hydrogen Hyper Fine Splitting/ Proton Radius Last Experiment @ JLab6 (2012). Analysis underway.

Summary

- Spin structure study full of surprises and puzzles
- A decade of experiments from JLab: exciting results
 - precision A₁ measurements at high-x: valence spin structure
 - spin-flavor: sea quark polarization, gluon polarization
 - precision measurements of g₂/d₂: high-twist
 - spin sum rules and polarizabilities
 - test χ PT calculations, \rightarrow ' δ_{LT} puzzle'
- Bright future
 - complete a chapter in spin structure study with 6 GeV JLab
 - 12 GeV Upgrade will greatly enhance our capability
 - Precision determination of the valence quark spin structure
 - EIC: precision determination of polarized sea and gluon and multi-d