Rapidity Dependent Transverse Flow at RHIC

- π, K, p spectra vs y for central Au+Au at 200 GeV
- mean p_T vs y ($0 < y < 3.5$)
- Blast-Wave Fits vs y ($y \sim 0, 1, 2, 3$)
- Summary

J.H. Lee
Brookhaven National Laboratory

for the BRAHMS Collaboration

APS/DNP 2003
Characterizing “Thermal” Source with Transverse Flow

- Curvature and Slope of m_T spectra increase with particle mass
 - measure inverse slope parameter (T_{obs}), $<p_T>$ of identified particles
 - $T_{obs} = T_{fo} + \text{mass} \cdot \beta^2$

- Hydro-inspired Blast-Wave fits to deduce freeze-out parameters
 - Local thermal equilibrated source or boosted system
 - parameterization with Flow velocity (β), freeze-out Temperature (T_{fo}) and System Geometry (size and profile)
 - Schnedermann et al. PRL48(1993)

$$\frac{dn}{m_T dm_T} \propto \int_0^R r \, dr \, m_T \, K_1 \left(\frac{m_T \cosh \rho}{T_{th}} \right) I_0 \left(\frac{p_T \sinh \rho}{T_{th}} \right)$$

- Thermal Freeze-out Temperature: T
- boost angle: $\rho = \tanh^{-1} \beta$
- Transverse velocity: $\beta(r) = \beta_s (r/R_{max})^\alpha$

How does Transverse Flow develop with rapidity?
- $<p_T>$ vs y
- BW Fit with T, β, α vs y
\pi^+ \text{ and } \pi^- (0-5\% \text{ Au+Au at } \sqrt{s_{NN}} = 200 \text{ GeV}) (0 \leq y \leq 3.5)

- Pion spectra shown with power-law fits (Divided by 10 successively from top)
- Fitting ranges for BW fits shown with dashed lines (-resonance, -"hard" part)
- "Inverse Slope" (from 0.3-1.0GeV): slowly decrease with rapidity (~220MeV -> ~200MeV)
- dN/dy shape: close to a Gaussian with $\sigma(\pi^+) \sim \sigma(\pi^-) \sim 2.3$
K* and K-(0-5% Au+Au at $\sqrt{s_{NN}} = 200$ GeV) ($0 \leq y \leq 3.3$)

- Kaon spectra shown with m_T exponential fits (Divided by 10 successively from top)
- Inverse Slope: smoothly decrease with rapidity (~300MeV -> ~230MeV)
- dN/dy shape: close to a Gaussian with $\sigma(K^+)\sim 2.4$ $\sigma(K^-)\sim 2.1$
proton and pbar spectra shown with Gaussian fits
- Spectra are summed over rapidity ranges of $\delta y=0.4-0.6$ due to statistics+acceptance
- Λ feed-down corrections are not applied
• Calculated from fitting spectra
• \(\langle p_T \rangle \) decrease with \(y \): \(\pi \sim 10\% \) K and \(p \sim 15-20\% \) drop from \(y=0 \) to \(y\sim 3 \)
• AMPT and 3D-Hydro model under-predict \(\langle p_T \rangle \)
• 3D-Hydro describe \(y \)-dependence qualitatively with a single \(T_{th} \) value (\(T_{th} = 100 \) MeV, \(T_{ch} = 170 \) MeV)
Spectra with BW Fits at $y \sim 0, 1, 2, 3$ (T, β_s, α in the fit $R_{\text{max}} = 13\text{fm}$)

\begin{align*}
\beta_s &= 0.737 \pm 0.016 \\
\text{Temp} &= 0.118 \pm 0.004 \\
\alpha &= 0.313 \pm 0.042
\end{align*}

\begin{align*}
\beta_s &= 0.776 \pm 0.020 \\
\text{Temp} &= 0.099 \pm 0.005 \\
\alpha &= 0.365 \pm 0.063
\end{align*}

\begin{align*}
\beta_s &= 0.763 \pm 0.072 \\
\text{Temp} &= 0.105 \pm 0.014 \\
\alpha &= 0.460 \pm 0.107
\end{align*}

\begin{align*}
\beta_s &= 0.495 \pm 0.130 \\
\text{Temp} &= 0.137 \pm 0.009 \\
\alpha &= 0.114 \pm 0.334
\end{align*}
Fits done with a fixed $\alpha = 0.31$ (Uncertainty in α increase with y)

- T increases as β decreases with rapidity
- BW parameters better defined for smaller y
Fits done with a fixed α ($y=0$ value) and T (or β_s)

β_s decrease with y :~25% decrease from $y\sim0$ to $y\sim3$

$\beta_s = 0.74-0.54$ ($<\beta> = 0.64-0.47$), $T=100-138$ MeV

Naïve picture: lower particle density \rightarrow easier/faster to be frozen \rightarrow higher temperature
Summary

• BRAHMS measured identified hadron spectra in $0 \leq y \leq 3.5$ in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

• $<p_T>$ increase with particle mass and decrease with rapidity

• Blast-Wave parameterization describes data with T and β

• Hydro-dynamical behavior/re-scattering in a wide rapidity range at RHIC
 - Strong collective transverse flow: $<\beta> \sim 0.64 - 0.47$
 - Thermal Freeze-out temperature: $T \sim 100 - 137$ MeV
 - Transverse flow decrease ($\sim 25\%$) with rapidity from $y=0$ to $y\sim3$ while temperature tends to increase
 - Consistent with Hydro calculations, especially at $y\neq0$? Constraint for models.