Nuclear Induced Particle Suppression at Large-x_F at RHIC

J.H. Lee
Physics Department
Brookhaven National Laboratory

For BRAHMS Collaboration
At the RHIC energies, hard scattering processes at high-p_T become important.

Partons are expected to loose energy in the dense matter.

Different rapidities provide different densities of the medium: Sensitive to the dynamics.

“Dialing” initial condition channel.

Largest medium effect at mid-rapidity (“Scale” to multiplicity)?

Rapidity dependent high-p_T suppression factors: provide information on dynamical medium effect.
R_{CP} and R_{AuAu} vs η for AuAu @200 GeV

Suppression at $p_T = 4$ GeV/c:
- $Pb+Pb \rightarrow \pi^0 + X$, 0-7% central [WA98]
- $Pb+Au \rightarrow \pi^0 + X$, 0-5% central [CERES]
- $S+Au \rightarrow \pi^0 + X$, 0-8% central [WA80]
- $Au+Au \rightarrow \pi^0 + X$, 0-10% central [PHENIX]

X.N. Wang jet quenching:
- Non-Abelian energy loss: $\Delta E_q / \Delta E_q = 9/4$
- "Non-QCD" energy loss: $\Delta E_q = \Delta E_q$

D'Enterria '05

R_{AA} ($p_T = 4$ GeV/c) vs $\sqrt{s_{NN}}$ (GeV):
“High”-p_T Particle Suppression at Forward rapidities

- Expected forward “enhanced” physics processes:
 - Shadowing, Gluon saturation, Phase-space constraint/Energy conservation
 ...
- With competing physics processes:
 - Partonic energy loss, Multiple scattering, Recombination
 ...

Nov. 15 QM2006 Shanghai J.H. Lee (BNL)
Forward Tomography: Dynamics + Geometry

- Shadowing+MS+Energy Loss
- "Extracted" opacity indicate longitudinally traveling Protons see less colored field
- Not a prediction: Assuming rapidity independent suppression factor
Particle Suppression due to Energy Conservation at Forward Rapidities/Large-x_F

- Universal suppression mechanism at large x_F seen in data for various reactions
- Expected no particles produced as $x_F \to 1$ due to energy conservation;
- more multiple interactions (more gluon radiation) make the effect larger in nuclei

“Sudakov suppression”

$x_F = \frac{2p_z}{\sqrt{s}}$
“Extended” Longitudinal Scaling of Centrality dependence: $R_{CP}^{N_{part}}$

- Extended range of limiting fragmentation behavior on centrality dependence of particle production:
 Factorization of Centrality and Energy dependence
BRAHMS Data/Acceptance: p_T vs x_F at $\sqrt{s_{NN}} = 200$ and 62 GeV

- Strong p_T-x_F correlation due to limited spectrometer solid angle acceptance
- Measurements from BRAHMS Mid-Rapidity Spectrometer (MRS) and Forward Spectrometer (FS)
- “Dynamic” x_F binning in p_T 0.2 GeV/c
- R_{CP} for centrality dependence in p_T-x_F: $R_{CP}(0-20/40-70\%), (20-40/40-70\%)$
$R_{CP}(h^-)$ vs x_F in Au+Au at $\sqrt{s_{NN}} = 200$ and 62 GeV

- $R_{CP}(0-20\%) < R_{CP}(20-40\%):$ Centrality dependent suppression in $x_F < 0.6$
- More suppression as x_F increases at fixed p_T (0.3 ~ 2.2 GeV/c)
- For the soft R_{CP} increase and maximize at $p_T \sim 1$ GeV/c
- Statistical errors only shown
- Systematic Uncertainties: 10% (p-to-p) + 10% (normalization)

Nov. 15 QM2006 Shanghai

J.H. Lee (BNL)
$R_{CP}(h^+) \text{ vs } x_F \text{ in } Au+Au \text{ at } \sqrt{s_{NN}} = 200 \text{ and } 62 \text{ GeV}$
$R_{CP(\text{proton})} \text{ vs } x_F \text{ in } Au+Au \text{ at } \sqrt{s_{NN}} = 200 \text{ and } 62 \text{ GeV}$

- Protons at high-x_F at the kinematic range dominates from initial protons.
- Yet similar behavior with h^-.

Nov. 15 QM2006 Shanghai
J.H. Lee (BNL)
Summary

- Nuclear modification factor R_{cp} for charged hadrons and proton for $\sqrt{s_{NN}} = 200$ and 62 GeV:
 - R_{cp} decreases with x_F at given p_T
 - Scaling-like behavior with x_F indicating Energy conservation might play a significant role in addition to dynamical suppression mechanism at forward region

- Constraint/input for more coherent/complete theoretical understanding on dynamics of particle suppression/production at RHIC
Back-up Slides
$R_{CP} (h^-)$ in dAu

- Stronger dependence of R_{CP} on x_F
- R_{CP} continuously increase with p_T
Recombination model at high-\(x_F\) in AuAu at 62 GeV

- Parton recombination without shower parton dominates forward particle production
- Loosening up kinematic limit and enhance particle production at high-\(x_F\) for peripheral collisions
- Protons are more efficiently produced at large-\(x_F\) (valence quark dominance)
y vs x_F