Transverse Single Spin Asymmetries for identified charged hadrons in pp collisions at 200 GeV and 62 GeV

F. Videbaek and J.H. Lee
Physics Department
Brookhaven National Laboratory

for BRAHMS Collaboration

DNP 2006, Nashville
Single transverse Spin Asymmetry (SSA): Introduction

- Large SSAs have been observed at forward rapidities in hadronic reactions: E704/FNAL & @AGS, and STAR/RHIC
- SSA is suppressed in naïve parton models ($\sim \alpha_s m_q / Q$)
- Non-zero SSA at partonic level requires
 - Spin Flip Amplitude, anda relative phase
- SSA: Unravelling the spin-orbital motion of partons?
Beyond Naïve Parton Models to accommodate large SSA

• Spin and Transverse-Momentum-Dependent parton distributions
 -“Final state” in Fragmentation (Collins effect),
 -“Initial state” in PDF (Sivers effect)
• Twist-3 effects
 -Hadron spin-flip through gluons
 -Efremov, Teryaev (final state)
 -Qiu, Sterman (initial state)
• Or combination of above
 -Ji, Qiu, Vogelsang, Yuan...

Challenge to have a consistent partonic description with data from 19, 200 and now 62 GeV:
- Energy dependent SSA vs x_F, p_T,
- Flavor dependent SSA
- Cross-section
BRAHMS SSA measurements in $p^+p \rightarrow \pi/K/p + X$ **at 200/62 GeV**

- Spin Asymmetries are defined as
 \[A_N = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{\varepsilon}{P} \]
 For non-uniform bunch intensities
 \[e = \frac{N^+ / L^+ - N^- / L^-}{N^+ / L^+ + N^- / L^-} = \frac{N^+ - L^*N^-}{N^+ + L^*N^-} \]
 where $L = \text{relative luminosity} = L^+ / L^-$
 and the yield of \(\pi \) in a given kinematic bin with the beam spin direction is \(N^+ \) (up) and \(N^- \) (down).
- Most of the systematic error in N^+/N^- cancel out
- Uncertainties on relative luminosity L estimated to be $< 0.3\%$

BRAHMS measures identified hadrons ($\pi,K,p,pbar$)

in the kinematic ranges of
- $0 < x_F < 0.35$ and $0.2 < p_T < 3.5 \text{ GeV/c}$ at $\sqrt{s}=200 \text{ GeV}$
- $0 < x_F < 0.6$ and $0.2 < p_T < 1.5 \text{ GeV/c}$ at $\sqrt{s}=62 \text{ GeV}$
 - x_F, p_T, flavor, \sqrt{s} dependent SSA
 - cross-section of un-polarized hadron production
 (constraint for theoretically consistent description)
Does pQCD explain inclusive spectra at 200 GeV at large rapidities?

Yes, for $p_T > 1.5$ GeV/c; NLO pQCD by Vogelsang.
BRAHMS FS Acceptance at 2.3 deg. and 4 deg.
/Full Field (7.2 Tm) at $\sqrt{s} = 200$ GeV

- Strong x_F-p_T correlation due to limited spectrometer solid angle acceptance
$A_N(\pi)$ at 2.3 deg. at $\sqrt{s} = 200$ GeV compared with Twist-3

- **Twist-3 parton correlation** calculation provided by F. Yuan
- Kouvarius, Qiu, Vogelsang, Yuan
- Solid lines: two-flavor (u, d) fit
- Dashed lines: valence + sea, anti-quark
- Calculations done (valid) only for $<p_T(\pi)> > 1$ GeV/c
Kinematic coverage at $\sqrt{s} = 62.4$ GeV (FS at 2.3 and 3 deg)
$A_N(\pi)$ at $\sqrt{s} = 62$ GeV

- Large $A_N(\pi)$: 40% at $x_F \sim 0.6$ $p_T \sim 1.3$ GeV
- Strong x_F-p_T dependence
- $|A_N(\pi^+)/A_N(\pi^-)|$ decreases with x_F-p_T
$A_N(\pi)$ at $\sqrt{s} = 62$ GeV compared with Twist-3 and Sivers

Curves: Twist-3 by F. Yuan
Curves: Sivers effect by U. D’Alesio
$A_N(K)$ at $\sqrt{s} = 62$ GeV compared with Twist-3

Experiments shows that A_n is the same for K^+ and K^-
Calculations have clear difference between K^+ and K^-
Spectra of π^- at 62 GeV

Is it reasonable to expect pQCD to work at 62 GeV? Earlier work by Soffer et al. NO BRAHMS have preliminary spectra for π^- at forward rapidity that can be compared to NLO pQCD.
Summary

- BRAHMS measures A_N of identified hadrons at 62 GeV and 200 GeV
- P, K cross-section at 200 GeV described by NLO pQCD
- Large SSAs seen for pions and kaons
 Suggesting:
 - Sivers mechanism plays an important role.
 - described (qualitatively) by Twist-3
 - main contributions are from leading (favored) quarks
 Open Questions:
 - where the large positive $A_N(K^-)$ come from then?
 - Sea quark contributions not well understood: $A_N(K^-)$ and $A_N(p\bar{p})$
 - how well is pQCD applicable at 62 GeV
- what can (not) be learned from A_N at $p_T < 1$ GeV/c
 - $A_N(-x_F) \sim 0$ set limits on Sivers-gluon contribution?
 - can $A_N (p, p\bar{p})$ be described in the consistent framework?
 - What are the theoretical uncertainties, $p_T \sim 1$ GeV valid for QCD description? In particular for 62 GeV.