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Abstract

Relative luminosities for different beam spin states must be determined to better
than 10~% — 1073 in order to measure spin asymmetries to the desired accuracy at
RHIC. It is demonstrated that biases due to high rates in luminosity monitors can
be kept acceptably small for anticipated RHIC operating conditions. Additionally,
the distribution of the estimates is shown to be approximately Gaussian (Normal)
with known mean and standard error, permitting the construction of confidence
intervals for the true spin asymmetry.

1 Introduction

Spin physics asymmetries are being measured at the RHIC polarized proton
collider at the Brookhaven National Laboratory. These spin asymmetries, such
as Ay,

1 Ny/Ly = NJL,

Ay = —
Y Py N/Ly + NJIL,

(1)

are frequently expected to be small, of order 0.01. In Eq. (1), Pg is the polar-
ization of one of the beams; Ny, N, are the numbers of events for a particular
physics process detected to the “left” of the beam; and L4, L are integrated
beam luminosities for beam spin directions up (1) and down (|). Only relative
luminosities are important in Eq. (1). It is often desired to measure such spin
asymmetries to a relative uncertainty of a few percent. As a consequence, Ly
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and L, must be determined to order 107* — 107 so as to make a negligible
contribution to the uncertainty on Ay, though averaging over many runs may
allow a less stringent condition.

During operation in 2002 and 2003, the beam usually occurred in short (~nsec)
bunches spaced at 213 nsec, consisting of 55 filled and 5 empty bunches around
each of the RHIC rings. For the STAR detector [1], two arrays of beam-beam
counters on opposite ends of STAR were used to monitor the luminosity. Each
array consisted of a set of scintillation counters covering pseudo-rapidity (| 7 |
= | In [tan (6145/2)] |) between approximately 3.3 and 5.0. They are similar in
design to those used initially at the CDF and DO detectors [2,3].

A luminosity event was recorded in a scaler whenever there was a coincidence
between at least one beam-beam counter from the array on each end of STAR.
Given the beam-beam counter acceptance, the cross section for the luminosity
events at /s = 200 GeV is roughly 26 mb [4], or about half the pp total cross
section. At a luminosity of 2 x 103! /em?/sec achieved during the 2003 RHIC
run, the average fraction of the colliding bunches that gave a luminosity event
was A ~ 0.1. In this scheme, multiple luminosity events from the passage of a
single bunch (in each beam) through STAR could not be distinguished from
single events because of the short bunch length, which leads to an error in the
derived relative luminosity significantly larger than 10=* — 1073,

This note describes a method to correct the number of luminosity events and
places limits on possible biases. However, there are many additional issues
that will require study and possible corrections in order to achieve reliable
luminosity monitoring. It will be assumed that background events, for example
from beam-gas interactions, can be accurately subtracted to better than 107* —
1073. The cross section measured by the beam-beam counters will be assumed
to be spin independent. Since the method relies on an accurate determination
of the fraction of bunches with no luminosity event, corrections will be needed
for accidental coincidences. It will also be assumed that bunch to bunch phase
space differences do not significantly affect the luminosity monitors. Finally,
if there are sizable luminosity changes during a run, the method may need
to be applied to several time intervals within the run to achieve a sufficiently
accurate luminosity determination.

2 Method

The number of true luminosity events, n, for each bunch passage through the
detector follows a Poisson distribution with probability



and mean or expectation E[n] = (n) = A. The analysis that follows will con-
centrate on counts for a particular bunch; corrections should be applied before
summing over bunches. In a particular run, each bunch will pass through the
detector N times, and the desired integrated luminosity is proportional to N A.
Since a particular bunch passes through STAR every (213 nsec)(60 bunches)
= 12.8 pusec, the value of N is of order 107 - 10® per run.

As previously noted, only a zero or one is recorded for each bunch passage in
this scheme, where a one indicates that one or more events occurred. These
outcomes have probabilities

o0 )\n
Pr(l) = ZF =1
n=1 :
)\0
Pr(0) = ae_)‘ = e

This implies that each bunch passage follows an independent Bernoulli distri-
bution. Thus, the summed events, S, for a particular bunch in a run will have
a binomial distribution

N! A5/ A\ Vs
Pr(S=s) = m(l—e ) (e )

with mean and standard deviation

s = N(l — 67)‘) (2)

o5 =\/Ne (1 — e ), (3)

Using S as the relative integrated luminosity leads to a systematic error, since
from Eq. (2)

ps = NA(1—=A/204+22/30 = X34l + ),

whereas N\ is the desired quantity. Therefore, the relative systematic error
(or relative bias) is approximately A/2!, or much larger than desired (0.05 vs.
107*- 1073, when X = .1).

It has been suggested [3] to use the expression

L x —NIn(l — S/N) = A (4)



for the relative integrated luminosity, since from Eq. (2)

—NlIn(l — ps/N) = NA.

This estimator has the additional property that it is the maximum likelihood
estimator (MLE) of N, the parameter value at which the observed count is
most likely. This can be shown since

In{Pr(S)} = In (S'(NLLS)J + Sln (1 - e*)‘) — (N =9)),

and

0 Se=A

— In{Pr(S)} = T

o —(N-8).

Setting this derivative equal to zero and solving gives

S
)\MLE = —1In (1_N>

However, A is not an unbiased estimator for NA because

E[A] = oc.

The mean is infinite since there is a very small, but nonzero, probability for
a count to be recorded for every bunch passage, or S = N. Since A is not
an unbiased estimator, it is important to investigate possible deviations from
the desired quantity NA. It might be expected that for sufficiently small A,
such deviations are negligible, and Eq. (4) can be used to obtain the relative
luminosity. This is true, and will be demonstrated below.

Under mild regularity conditions [5], which are satisfied in this case, the
MLE is asymptotically unbiased. Furthermore, the distribution of the quan-
tity VN (AvLe — A) approaches a Gaussian distribution with mean zero and
variance 1/I()) in the limit as N increases to infinity:

VN (e —A) -4 Normal <Oﬁ> :

where () is the Fisher Information,



Table 1

Results of simulations to estimate the relative bias as a function of the average
fraction of colliding beam bunches that gave a luminosity event, A. The observed
mean and standard deviations are shown, along with the theoretical values from the
asymptotic distribution, ps and oy, respectively. The relative bias is the fractional
difference between the observed and expected means; the theoretical standard errors
of the relative biases are also provided. The bias is less than 10~* for A < 10, and
is consistent with zero for A < 1.

A Obs. Mean LA St. Dev. oA Rel. Bias

15 1501675678 | 1.5 x 10° | 18576636 | 18080421 | (1.117 £ 0.012) x 1073

13 1300234352 | 1.3 x 10° | 6679085 | 6651409 (1.80 £0.05) x 10~*

10 | 1000013483 |  10° 1485115 | 1484098 | (1.3540.15) x 10~°

1 99999990.7 108 13096 13108 | —(0.93 £1.31) x 1077

1 9999997.4 107 3244.7 3243 —(2.6 £3.2) x 1077

.01 || 1000000.54 106 1003.5 1002.5 (5.4 +10.0) x 107
.001 | 100000.30 10° 316.4 316.3 (3.0 £3.2) x 107
0001 | 9999.961 104 100.1 100.0 —(3.9 £ 10.0) x 106

Thus, for N sufficiently large, NAyr = A is approximately Gaussian dis-
tributed with mean

and standard deviation

on = N (er=1). (6)

Note that the maximum value of py/oa from Egs. (5,6) occurs for A =2 1.6,
when approximately 20 % of the bunch passages give zero luminosity events.

In order to demonstrate that NV on the order of 10" —10® is sufficiently large to
ensure that the asymptotic distribution is achieved, simulations for a variety
of values of \ were performed. For each of eight values of )\ in the range 1074
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Fig. 1. This plot contains the histogram of A when A = .1 for one million samples of
size N = 108. Superimposed upon the plot is the theoretical Gaussian distribution
for these NV and A. The two distributions show good agreement for this sample size.

to 15, one million samples of size N = 10% were simulated. For each sample, A
was calculated, and the bias and variance of the estimator were determined.
The results are included in Table 1, along with the theoretical values predicted
by the asymptotic distribution.

Notice that as the value of A increases above A = 10, the magnitude of the bias
increases rapidly; for values of A > 15, samples with S = N are often observed,
causing severe biases. Additionally, to evaluate the asymptotic normality of
the estimates, a histogram of the distribution of A is constructed for each
value of ) in table 1, using 100,000 samples of size N = 108. The theoretical
Gaussian distribution is superimposed and shows excellent agreement with the
observed distribution for A < 1. The plot with A = .1 is displayed in Fig. 1.

The approximate normality of the parameters allows for the easy construction
of a 100(1 — )% confidence interval for NA. The form of this confidence
interval is

(A, B) = (A = Zaj20n, A+ Zoj204), (7)

where Z, /5 is the 100(1 — «/2)% percentile of a standard normal distribution.
Now, letting (A4, Bt) be the confidence interval for NiA+ and (A}, B)) be
the confidence interval for V||, and assuming that the two quantities are
independent, a conservative 100[(1 — «)?]% confidence interval for the spin
asymmetry can be constructed. This interval will have the form



(An(Ly = By, Ly = A)), Av(Ly = Ay, Ly = By)),

where Ay(L4, L)) is as defined in Eq. (1). To construct a 95% confidence
interval for the spin asymmetry, 97.47% confidence intervals for the individual
N2As are needed. This corresponds to Z,/, = 2.236 for construction of the
confidence intervals in Eq. (7).

3 Discussion

The expression for the relative luminosity in Eq. (4) has been shown to have
a fractional bias or error smaller than 10~* for the mean number of detected
interactions per bunch passage A < 10. In this expression, the argument of
the logarithm, (1 — S/N), is the fraction of bunch passages with no lumi-
nosity event. In addition, A is the maximum likelihood estimator, which is
asymptotically unbiased and has an approximate Gaussian distribution with
mean N . Therefore, using Eq. (4) with the STAR beam-beam counter data
for N ~ 10® will meet the requirements for monitoring luminosity for spin
parameter measurements at RHIC, where luminosities up to 2 x 102 /cm? /sec
(A ~ 1) are projected. Additionally, confidence intervals can be constructed
for both the luminosities and the spin asymmetry, allowing the uncertainty in
these quantities to be assessed.
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