Local polarimetry at RHIC experiments

XIIIthInternational Workshop on Polarized Sources, Targets & Polarimetry, Sep. 7

Supported by RIKEN special postdoctoral researcher

Outline

- RHIC spin program
- Local polarimetry
 - Performed by very forward neutron A_N (at PHENIX) and charged particles A_N (STAR)
- First polarized pp collision at $\sqrt{s} = 500 \text{ GeV}$ - So far $\sqrt{s} = 62$ and 200 GeV are performed
- Origin of these A_N
- Discussion
- Summary

RHIC spin program

- Understanding of proton spin structure
 - Spin puzzle

Proton spin : $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + \Delta L$

– Polarized DIS extracts quark contribution $\Delta\Sigma \sim 0.25$

• RHIC spin program : gluon and sea contributions

$$A_{LL} \equiv \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \quad A_{LL}^{g+g} \sim \frac{\Delta g(x_1)}{g(x_1)} \cdot \frac{\Delta g(x_2)}{g(x_2)} \cdot \hat{a}_{LL}^{g+g}$$
Versus
Needs longitudinal
polarized beams
3

3

Polarized proton beams at RHIC

- Proton spin is keeping in transverse direction
 - Keeping by Siberian snake magnet
 - Polarization is measured by pC (pp) and CNI polarimeter.
- Spin is rotated to longitudinal at collision points
 - Rotated by Spin rotator magnet
 - Spin direction is monitored by Local polarimeter

Local polarimetry

By measuring A_N

$$A_{N} \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}}, \ A_{N} = \frac{1}{P} \cdot \varepsilon_{N}$$

in any produced particle from polarized proton collision,

Spin rotator OFF (Transverse run) • pC CNI pol. \rightarrow Finite A_N^{pC} • Local pol \rightarrow Finite A_N Spin rotator ON (Longitudinal run) • pC CNI pol. \rightarrow Finite A_N^{pC}

• Local pol
$$\rightarrow A_N = 0$$

Local polarimetry is necessary in each experiment

What we measure at PHENIX Very forward neutron A_N at ZDC

- ZDC (Zero Degree Calorimeter)
 - 3 modules : 5.1 λ_{I}
 - $(1.7 \lambda_{\rm I} 50 X_0 \text{ for each module})$
 - $-\Delta E/E \sim 20\%$ for 100 GeV neutron
- SMD (Shower Max Detector)
 - Sintillator hodoscope in x and y
 - ~1 cm position resolution for 50 GeV neutron (by simulation)
- This is global detector at RHIC

η > 6.5

110cm

6

Very forward neutron A_N

- Discovered at RHIC-IP12 experiment (2001-2)
 - (First) pol. pp collision at $\sqrt{s} = 200 \text{ GeV}$
 - -10% in forward kinematics
 - Consistent with zero in backward

What we measure at STAR Forward charged particle A_N at BBC

- BBC (Beam Beam Counter)
 - Hexagonal scintillator
- VPD (Vertex Position Detector)
 - ¹/₄ inch Cherenkov radiator
 - \rightarrow Both are counting charged particles

Detector	η range
BBC (outer)	3.3 - 3.9
BBC (inner)	3.9 - 5.0
VPD	4.2 - 5.0

Charged particle A_N in BBC

Local pol. operation at PHENIX

- Significant raw A_N is observed at transverse RUN, while it is ~0 at longitudinal RUN.
- Beam polarizations during these period are almost same : 45-50%
- Calculate longitudinal component quantitatively
 - achieve 99% until RHIC 2008 run

Polarized pp collision @ $\sqrt{s} = 500 \text{ GeV}$

• In this year run, RHIC pol. beams were colliding at $\sqrt{s} = 500$ GeV in PHENIX and STAR !

- Average polarization ~ 35% (online value)

• PHENIX and STAR measured neutron asymmetry

Scaler mode (neutron asymmetry)

- PHENIX has scaler mode too.
 - Significant asymmetry bunch-by-bunch with only 5 mins. data!

Physics : origin of neutron A_N

- Cross section measurements such very forward neutron production are already performed at ISR, NA49 (*pp*) and HERA (*ep*)
 - Large cross section at high x_F region (xF ~ 0.8)
 - No \sqrt{s} dependence, scaled by x_F (claimed by ISR 31-63 GeV)
- These behaviors are explained by one pion exchange model.
 - A_N may be considered as this frame; it is generated by interference btw spin flip by pion exchange and non-spin flip amplitudes.
 - But not understand it quantitatively so far.

θ dependent neutron A_N (inclusive neutron trigger)

- Comparison A_N using various \sqrt{s}
 - A_N grows with increasing θ - A_N grows with increasing \sqrt{s}

θ dependent neutron A_N (neutron with charged particles trigger)

ZDC/

SMD

- Same behaviors are observed
 - A_N is larger with association of charged particles
- This trigger sample is used for polarimetry

(trial) p_T dependent neutron A_N

- p_T is estimated assuming ISR p_T shape
 - In this kinematics, $\mathbf{p}_{\mathrm{T}} \sim \mathbf{x}_{\mathrm{F}} * \mathbf{E}\mathbf{p} * \mathbf{\theta}$
 - A_N is showing p_T dependence; amplitude grows up !

Origin of charged particle A_N

E704 experiment at Fermilab

- Could be considered as mixing of charged particles A_N
 - $A_N(\pi^+) > 0, A_N(\pi^-) < 0$
 - $A_N(K^+) > 0, A_N(K^-) > 0$
 - $A_{N}(\bar{p}) > 0, A_{N}(p) \sim 0$
 - \rightarrow Will be positive A_N in total

at RHIC

energy

What we learn from $\sqrt{s} = 62, 200$ and 500 GeV

- Very forward neutron A_N
 - $A_N(62) \le A_N(200) \le A_N(500)$
 - Trigger rate for 62 GeV really low.. (due to narrow p_T acceptance)
- Charged particle A_N
 - PHENIX BBC (3.0< $|\eta|$ <3.9) measured finite A_N at 62 GeV
 - While $A_N \sim 0$ at 200 GeV $\rightarrow A_N(62) > A_N(200)$
 - It will depend on η range. Analyses for 62 GeV and 500 GeV at STAR are ongoing
 - STAR has large acceptance, $3.3 < |\eta| < 5.0$
- Local polarimetry at RHIC,
 - prefers very forward neutron $A_{\rm N}$ for 500 GeV
 - (would) prefer charged particles A_N for 62 GeV

Summary

- RHIC spin program needs local polarimetry in each experiment and has been developed independently
 - PHENIX : by very forward neutron A_N
 - STAR : by forward charged particles A_N
 - ← Successfully monitored spin direction for 62 and 200 GeV run.
- In this year, first 500 GeV polarized pp run was performed
 - We also measured large A_N for leading neutron production
- We learned that need to monitor both A_N to cover all centerof-mass energy range ($\sqrt{s} = 62$, 200 and 500 GeV).
 - A_N amplitudes are changed due to the physics kinematics.

bakup

Local polarimeter

- Measurement of spin direction of proton beams at collision point as function of spin rotator operation

		BLUE beam		Yellow beam	
RUN	\sqrt{s} (GeV)	p_T/p	p_L/p	p_{T}/p	p_L/p
3	200	0.119 ± 0.067	$0.995 \stackrel{\scriptscriptstyle +0.003}{_{\scriptstyle -0.013}}$	0.223 ± 0.075	$0.975 \ {}^{+0.012}_{-0.019}$
4	200	0.094 ± 0.047	$0.997 \substack{+0.002 \\ -0.007}$	0.074 ± 0.045	$0.998 \substack{+0.002 \\ -0.008}$
5	200	0.100 ± 0.010	0.997 ± 0.001	0.147 ± 0.012	0.989 ± 0.002
6	62	0.107 ± 0.151	1.000 - 0.034	0.112 ± 0.119	1.000 - 0.025
6	200	0.125 ± 0.024	0.993 ± 0.004	0.111 ± 0.023	0.994 ± 0.003

Scaler mode : Fill#10371 (transverse pol.)

Scaler mode : Fill#10372 (unpol.)

STAR BBC configuration

Require

East-West coincidence

Top and bottom of inner tiles clean to reduce dilution of asymmetry Keeps ~5% of all bunch crossings. (Backgrounds from single beam accidentals less than ~1% of sample after this requirement.) Keeps 20% of the 5%=1% of all crossings pass both requirements.

Use tiles 5+6 for Left, tiles 2+3 for Right

Typical numbers on the order of

~3M events per bunch per hour

 \sim 3.5 σ (statistical) measurement of polarization per bunch per hour

Estimated p_T distributions

Will make BBC scaler ?

- Luminosity $\rightarrow 62:200:500 \sim 1:10:25$
- BBC cross section $\rightarrow 62:200:500 \sim 14:24:30 \text{ (mb)}$
 - 62& 200 : Analysis note 688 500 : Amaresh's presentation at W meeting (2009/06/12) : not final these values
- ZDCN|S ratio relative to BBC \rightarrow 62 : 200 : 500 ~ 24 : 36 : 67
- Total count rate for ZDCN|S \rightarrow 62 : 200 : 500 ~ 1 : 25 : 150
- Total $A_N / \Delta A_N \rightarrow 62 : 200 : 500 \sim 1 : 15 : 75$

Estimation for scaler

- Total $A_N / \Delta A_N \rightarrow 62 : 200 : 500 = 1 : 15 : 75$
 - − 62 GeV → 0.7 σ / point (5 mins) → 3.5 σ / 2 hours.
 - In addition, BG from charged particles are very high.
 - From pythia simulation, only 14% is neutron while ~25-33% for 200 and 500 GeV (with 5 GeV threshold).

* Need to consider polarization, rate.

RHIC A_N results (BRAHMS)

Detector : Forward Spectrometer (FS) 3.3< η <5.25

- $A_N(K^+) \sim A_N(K^-)$ - $K^+(u\bar{s})$ vs. $K^-(\bar{u}s)$ why they are same ?
- $A_N(p_bar)>0$, while $A_N(p)\sim 0$
 - Large A_N for anti-proton ?
 - \rightarrow Key is NOT valence quark in transverse physics?

RHIC A_N results (BRAHMS)

• $\pi^+ \bigcirc \pi^-$: BRAHMS 62.4 GeV RPL 101 042001 (2008) $\square \pi^+ \square \pi^-$: E704 19.4 GeV RPL 77 2626 (1996)

PHENIX LP until RUN8

• Calculate longitudinal component via vertical component

$$\frac{P_L}{P} = \sqrt{1 - \left(\frac{P_T}{P}\right)^2}, \qquad \frac{P_T}{P} = \frac{A_N^{Longitudinal}}{A_N^{Transverse}}.$$

- Spin direction is extracted through the run.
 - Data rate is 100-200 Hz during physics run in PHENIX DAQ
- STAR also has performed LP work using BBC asymmetry Achieved 99 %

Local results are shown for longitudinal runs.

longitudinal beams !

		BLUE beam		Yellow beam	
RUN	\sqrt{s} (GeV)	p_T/p	p_L/p	p_{T}/p	p_L/p
3	200	0.119 ± 0.067	$0.995 \stackrel{\scriptscriptstyle +0.003}{_{\scriptstyle -0.013}}$	0.223 ± 0.075	$0.975 \ {}^{+0.012}_{-0.019}$
4	200	0.094 ± 0.047	$0.997 \substack{+0.002 \\ -0.007}$	0.074 ± 0.045	$0.998 \stackrel{+0.002}{_{-0.008}}$
5	200	0.100 ± 0.010	0.997 ± 0.001	0.147 ± 0.012	0.989 ± 0.002
6	62	0.107 ± 0.151	1.000 - 0.034	0.112 ± 0.119	1.000 - 0.025
6	200	0.125 ± 0.024	0.993 ± 0.004	0.111 ± 0.023	0.994 ± 0.003

RUN8 : transverse run only