Highlights from PHENIX at RHIC #### **Rachid Nouicer** (for the PHENIX Collaboration) Brookhaven National Laboratory PHENIX has several recent findings. Few (relevant) selected results: - 1. Energy and System Size Dependence of Strangeness (\$\phi\$ meson) Production - 2. Open Heavy Flavor: Charm and Bottom Separation - 3. Collective Dynamics in Small Systems - 4. Summary # PHENIX Collected Large Data Sets: 2000 to 2016 | Run | Species | Total particle
energy
[GeV/nucleon] | total
delivered
Luminosity
[μb ⁻¹] | Run | Species | Total particle
energy
[GeV/nucleon] | Total
delivered
luminosity
[μb ⁻¹] | |----------------|-----------------------|---|---|-------------|---|---|---| | I (2000) | Au+Au
Au+Au | 56
130 | < 0.001
20 | IX (2009) | p+p
+p | 500
200 | 110×10 ⁻⁶
114×10 ⁻⁶ | | II (2001/2002) | Au+Au
Au+Au
p+p | 200
19.6
200 | 25.8
0.4
1.4x10 ⁻⁶ | X (2010) | Au+Au
Au+Au
Au+Au
Au+Au
Au+Au | 200
62.4
39
7.7
11.5 | 10.3x10 ⁻³ 544 206 4.23 7.8 | | III (2003) | d+Au
p+p | 200
200 | 73x10 ⁻³
5.5x10 ⁻⁶ | XI (2011) | p+p
Au+Au
Au+Au
Au+Au | 500
19.6
200
27 | 166x10 ⁻⁶
33.2
9.79x10 ⁻³
63.1 | | IV(2004) | Au+Au
Au+Au
p+p | 200
62.4
200 | 3.53x10 ⁻³
67
7.1x10 ⁻⁶ | XII (2012) | p+p
p+p
U+U
Cu+Au | 200
510
193
200 | 74x10 ⁻⁶
283x10 ⁻⁶
736
27x10 ⁻³ | | V (2005) | Cu+Cu
Cu+Cu | 200
62.4 | 42.1x10 ⁻³ 1.5x10 ⁻³ 0.02x10 ⁻³ 29.5x10 ⁻⁶ 0.1x10 ⁻⁶ | XIII (2013) | p+p | 510 | 1.04x10 ⁻⁹ | | | Cu+Cu
p+p
p+p | 22.4
200
410 | | XIV (2014) | Au+Au
Au+Au
³He+Au | 14.6
200
200 | 44.2
43.9x10 ⁻³
134x10 ⁻³ | | VI (2006) | p+p
p+p | 200
62.4 | 88.6x10 ⁻⁶
1.05x10 ⁻⁶ | XV (2015) | p+p
p+Au
p+Al | 200
200
200 | 282×10 ⁻⁶
1.27×10 ⁻⁶
3.97×10 ⁻⁶ | | VII (2007) | Au+Au
Au+Au | 200
9.2 | 7.25x10 ⁻³
Small | XVI (2016) | Au+Au
d+Au | 200
200 | 46.1x10 ⁻³
46.1x10 ⁻³ | | VIII (2008) | d+Au
p+p
Au+Au | 200
200
9.6 | 437x10 ⁻³
38.4x10 ⁻⁶
Small | | d+Au
d+Au
d+Au
Au+Au | 62.4
19.6
39
200 | 44.0x10 ⁻³ 7.2x10 ⁻³ 7:50 AM 06/27/2016 | ### PHENIX Collected Large Data Sets: 2000 to 2016 | Run | Species | Total particle
energy
[GeV/nucleon] | total
delivered
Luminosity
[μb ⁻¹] | Run | Species | Total particle
energy
[GeV/nucleon] | Total
delivered
luminosity
[μb ⁻¹] | |----------------|-----------------------|---|---|-----------|-------------------------|---|---| | I (2000) | Au+Au
Au+Au | 56
130 | < 0.001
20 | IX (2009) | p+p
+p | 500
200 | 110x10 ⁻⁶
114x10 ⁻⁶ | | | | | | X (2010) | Au+Au | 200 | 10.3x10 ⁻³ | | II (2001/2002) | Au+Au
Au+Au
p+p | 200
19.6
200 | 25.8
0.4
1.4×10 ⁻⁶ | | Au+Au
Au+Au
Au+Au | 62.4
39
7.7 | 544
206
4.23 | ### Major Upgrades to PHENIX = sPHENIX #### New sPHENIX Collaboration | | | | | | °He+Au | 200 | 134x10 ° | |--------------|----------------------|-------------------|--|------------|-------------------------------|---------------------------|--| | VI (2006) | p+p
p+p | 200
62.4 | 88.6x10 ⁻⁶
1.05x10 ⁻⁶ | XV (2015) | p+p
p+Au
p+Al | 200
200
200 | 282x10 ⁻⁶
1.27x10 ⁻⁶
3.97x10 ⁻⁶ | | VII (2007) | Au+Au
Au+Au | 200
9.2 | 7.25x10 ⁻³
Small | XVI (2016) | Au+Au
d+Au | 200
200 | 46.1x10 ⁻³
46.1x10 ⁻³ | | VIII (2008) | d+Au
p+p
Au+Au | 200
200
9.6 | 437x10 ⁻³
38.4x10 ⁻⁶
Small | | d+Au
d+Au
d+Au
Au+Au | 62.4
19.6
39
200 | 44.0x10 ⁻³ 7.2x10 ⁻³ 7:50 AM 06/27/2016 | #### **PHENIX Detector** - PHENIX: optimized to measure leptons: rapidity coverage: 1.2<|y|<2.2 and |y|<0.35 1) high rate capability 2) emphasis on mass resolution & particle ID 3) first level e&µ triggers #### Recent Measurements Use Silicon Trackers 0.1 0.2 0.3 DCA_R [cm] ### What NEW on ϕ Production? What have we learned from ϕ production in colliding small systems? p+p, p+AI, p+Au, d+Au, and ^3He+Au ## Energy and System Size Dependence #### Remarks on *ϕ* production: - ➤ In the early state of high-energy collisions, strangeness is produced in flavor creation (gg \rightarrow ss, qq \rightarrow ss) and flavor excitation (gs \rightarrow gs, qs \rightarrow qs). Strangeness is also created during the subsequent partonic evolution via gluon splittings (g \rightarrow ss). These processes tend to dominate the production of high-p_T strange hadrons. - > At low-p_T, nonperturbative processes dominate the production of strange hadrons. The detailed production mechanism is still an open issue. ## Energy Dependence of ϕ Production in p+p - ❖ Strangeness (♦ meson) production cross section increases as a function of energy: from RHIC(PHENIX) to LHC(ALICE). - ❖ Model calculations of strangeness (♦ meson) production exhibit the same trends as data from RHIC to LHC energies. #### Variety of small systems: p+AI, p+Au, and ³He+Au Nuclear Modification Factor versus Momentum Wide Range in p_T Allow systematic study of cold nuclear matter effects involved in φ meson production using models like AMPT and EPOS. See also talk by Murad Sarsour PSS Thur. 10:00 #### Variety of small systems: p+Al, p+Au, d+Au, and ³He+Au - Nuclear Modification Factor versus Rapidity - → Backward Rapidity: no suppression - → Forward Rapidity: observe suppression Allow systematic study of cold nuclear matter effects involved in φ meson production using models like AMPT and EPOS. See also talk by Murad Sarsour PSS Thur. 10:00 ## Fraction of J/ψ from B decays in p+p Collisions Forward Silicon Vertex detector (FVTX): Measure $B \rightarrow J/\psi \rightarrow \mu^{\pm}$ - B's measured down to p_T = 0! - New results: measured in p+p at 200 GeV Clear energy dependence ## Fraction of J/ψ from B decays (Cu+Au) - Now using the measured B→J/ψ fraction in p+p @ 200 as the baseline (see previous slide) - Non-prompt J/ψ R_{CuAu} consistent with binary scaling - Non-prompt J/ψ R_{CuAu} consistent with nPDF EPS09 initial state effets Non-prompt J/ψ in contrast to highly suppressed prompt J/ψ See also talk by Hachiya Takashi PSHF4 Fri. 17:05 #### Separation of Charm and Bottom in AuAu Collisions #### Silicon Vertex Detector (VTX): Measure D,B mesons → e[±] - Using "unfolding" method PRC 93, 3, 034904 (2016) - New results:0-10% AuAuat 200 GeV - Clear separation of charm/bottom for p_T < 5 GeV/c R_{AA}(c→e) < R_{AA}(b→e) ### Separation of Charm and Bottom in AuAu Silicon Vertex Detector (VTX): Measure D,B mesons → e[±] Using "unfolding" method PRC 93, 3, 034904 (2016) New results:0-10% AuAuat 200 GeV - Transport (Langevin): Reasonable agreement at low-p_T - Theory needs large coupling!More extreme separation? ## Collective Dynamics in Small Systems | Courtesy of Richard Seto, Lake Louise 2017 $\varepsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle}$ | | | | | | | | | |--|---------------------------|-------------------------|--------------|------------------------------|--|--|--|--| | System (0-5%) | N _{participants} | N _{collisions} | ϵ_2 | $\boldsymbol{\varepsilon}_3$ | | | | | | Au+Au | 347 | 946 | | | | | | | | ³ He+Au | 25 | 26 | 0.50 | 0.28 | | | | | | d+Au | 17 | 18 | 0.54 | 0.19 | | | | | | p+Au | 10 | 11 | 0.23 | | | | | | EXPECT for v_2 (elliptic flow) : ${}^{3}\text{He} + \text{Au} \sim \text{d} + \text{Au} > \text{p} + \text{Au}$ EXPECT for v_3 (triangular): ${}^3He + Au > d + Au$ ## v₂ (Elliptic Flow): ³He+Au, d+Au, p+Au and p+Al ### v₂ (elliptic flow) charged hadrons Estimate of "non-flow" included systematic error) Estimate of "non-flow" included systematic error) v₂ (elliptic flow): ³He+Au ~ d+Au v₂ (elliptic flow) is developed for even for p+Al Collisions (N_{participants} ~ 6) ## v₂ (Elliptic Flow): ³He+Au, d+Au, p+Au and p+Al ### Mass ordering π , p? #### Mass ordering characteristic of hydrodynamic behavior # What about v₃ (Triangular Flow)? ## What about Quenching in Small Systems? - System size dependent enhancement at p_{T}^{\sim} 5GeV/c: $R_{p+Au} > R_{d+Au} > R_{3He+Au}$ Linear pseudorapidity dependence: - → Backward enhancement p+Au > p+Al - \rightarrow Forward suppression p+Au \approx p+Al #### Summary #### **♦ Without Doubt RHIC is Amazing QCD Machine** ♦ Many Species, Many Energies, and High Luminosity and Stability. #### **♦ Strangeness in Small Systems** \diamond The PHENIX experiment measured ϕ meson production in p+p, p+AI, p+Au, d+Au, Cu+Cu, Cu+Au and Au+Au collisions with a wide range in p_T and rapidity to study cold and hot nuclear matters' effects. The ϕ meson cross section exhibits increase from RHIC to LHC energies. #### ♦ Open Heavy Flavor Nuclear Modification Factor ♦ New measurements 0-10% AuAu at 200 GeV show clear separation of charm and bottom for p_T < 5 GeV. Analyzing full data set and reduce systematic errors for the high-p_T range are crucial for clear separation of charm and bottom. #### ♦ Collective Dynamics in Small Systems ♦ PHENIX has measured Flow, v_2 (elliptic) v_3 (triangularity) in a variety of small systems at $\sqrt{s} = 200$ GeV. v_2 (elliptic flow) is developed for even for p+Al Collisions ($N_{participants} \sim 6$). Without doubt, these results became a challenge to many models and final physics interpretation still work in progress. #### PHENIX has lots of data left to analyze, and more surprises are expected.