

Highlights from PHENIX at RHIC

Rachid Nouicer

(for the PHENIX Collaboration)
Brookhaven National Laboratory

PHENIX has several recent findings. Few (relevant) selected results:

- 1. Energy and System Size Dependence of Strangeness (\$\phi\$ meson) Production
- 2. Open Heavy Flavor: Charm and Bottom Separation
- 3. Collective Dynamics in Small Systems
- 4. Summary

PHENIX Collected Large Data Sets: 2000 to 2016

Run	Species	Total particle energy [GeV/nucleon]	total delivered Luminosity [μb ⁻¹]	Run	Species	Total particle energy [GeV/nucleon]	Total delivered luminosity [μb ⁻¹]
I (2000)	Au+Au Au+Au	56 130	< 0.001 20	IX (2009)	p+p +p	500 200	110×10 ⁻⁶ 114×10 ⁻⁶
II (2001/2002)	Au+Au Au+Au p+p	200 19.6 200	25.8 0.4 1.4x10 ⁻⁶	X (2010)	Au+Au Au+Au Au+Au Au+Au Au+Au	200 62.4 39 7.7 11.5	10.3x10 ⁻³ 544 206 4.23 7.8
III (2003)	d+Au p+p	200 200	73x10 ⁻³ 5.5x10 ⁻⁶	XI (2011)	p+p Au+Au Au+Au Au+Au	500 19.6 200 27	166x10 ⁻⁶ 33.2 9.79x10 ⁻³ 63.1
IV(2004)	Au+Au Au+Au p+p	200 62.4 200	3.53x10 ⁻³ 67 7.1x10 ⁻⁶	XII (2012)	p+p p+p U+U Cu+Au	200 510 193 200	74x10 ⁻⁶ 283x10 ⁻⁶ 736 27x10 ⁻³
V (2005)	Cu+Cu Cu+Cu	200 62.4	42.1x10 ⁻³ 1.5x10 ⁻³ 0.02x10 ⁻³ 29.5x10 ⁻⁶ 0.1x10 ⁻⁶	XIII (2013)	p+p	510	1.04x10 ⁻⁹
	Cu+Cu p+p p+p	22.4 200 410		XIV (2014)	Au+Au Au+Au ³He+Au	14.6 200 200	44.2 43.9x10 ⁻³ 134x10 ⁻³
VI (2006)	p+p p+p	200 62.4	88.6x10 ⁻⁶ 1.05x10 ⁻⁶	XV (2015)	p+p p+Au p+Al	200 200 200	282×10 ⁻⁶ 1.27×10 ⁻⁶ 3.97×10 ⁻⁶
VII (2007)	Au+Au Au+Au	200 9.2	7.25x10 ⁻³ Small	XVI (2016)	Au+Au d+Au	200 200	46.1x10 ⁻³ 46.1x10 ⁻³
VIII (2008)	d+Au p+p Au+Au	200 200 9.6	437x10 ⁻³ 38.4x10 ⁻⁶ Small		d+Au d+Au d+Au Au+Au	62.4 19.6 39 200	44.0x10 ⁻³ 7.2x10 ⁻³ 7:50 AM 06/27/2016

PHENIX Collected Large Data Sets: 2000 to 2016

Run	Species	Total particle energy [GeV/nucleon]	total delivered Luminosity [μb ⁻¹]	Run	Species	Total particle energy [GeV/nucleon]	Total delivered luminosity [μb ⁻¹]
I (2000)	Au+Au Au+Au	56 130	< 0.001 20	IX (2009)	p+p +p	500 200	110x10 ⁻⁶ 114x10 ⁻⁶
				X (2010)	Au+Au	200	10.3x10 ⁻³
II (2001/2002)	Au+Au Au+Au p+p	200 19.6 200	25.8 0.4 1.4×10 ⁻⁶		Au+Au Au+Au Au+Au	62.4 39 7.7	544 206 4.23

Major Upgrades to PHENIX = sPHENIX

New sPHENIX Collaboration

					°He+Au	200	134x10 °
VI (2006)	p+p p+p	200 62.4	88.6x10 ⁻⁶ 1.05x10 ⁻⁶	XV (2015)	p+p p+Au p+Al	200 200 200	282x10 ⁻⁶ 1.27x10 ⁻⁶ 3.97x10 ⁻⁶
VII (2007)	Au+Au Au+Au	200 9.2	7.25x10 ⁻³ Small	XVI (2016)	Au+Au d+Au	200 200	46.1x10 ⁻³ 46.1x10 ⁻³
VIII (2008)	d+Au p+p Au+Au	200 200 9.6	437x10 ⁻³ 38.4x10 ⁻⁶ Small		d+Au d+Au d+Au Au+Au	62.4 19.6 39 200	44.0x10 ⁻³ 7.2x10 ⁻³ 7:50 AM 06/27/2016

PHENIX Detector

- PHENIX: optimized to measure leptons: rapidity coverage: 1.2<|y|<2.2 and |y|<0.35

1) high rate capability 2) emphasis on mass resolution & particle ID 3) first level e&µ triggers

Recent Measurements Use Silicon Trackers

0.1 0.2 0.3 DCA_R [cm]

What NEW on ϕ Production?

What have we learned from ϕ production in colliding small systems?

p+p, p+AI, p+Au, d+Au, and ^3He+Au

Energy and System Size Dependence

Remarks on *ϕ* production:

- ➤ In the early state of high-energy collisions, strangeness is produced in flavor creation (gg \rightarrow ss, qq \rightarrow ss) and flavor excitation (gs \rightarrow gs, qs \rightarrow qs). Strangeness is also created during the subsequent partonic evolution via gluon splittings (g \rightarrow ss). These processes tend to dominate the production of high-p_T strange hadrons.
- > At low-p_T, nonperturbative processes dominate the production of strange hadrons. The detailed production mechanism is still an open issue.

Energy Dependence of ϕ Production in p+p

- ❖ Strangeness (♦ meson) production cross section increases as a function of energy: from RHIC(PHENIX) to LHC(ALICE).
- ❖ Model calculations of strangeness (♦ meson) production exhibit the same trends as data from RHIC to LHC energies.

Variety of small systems: p+AI, p+Au, and ³He+Au

Nuclear Modification Factor versus Momentum

Wide Range in p_T

Allow systematic study of cold nuclear matter effects involved in φ meson production using models like AMPT and EPOS.

See also talk by Murad Sarsour PSS Thur. 10:00

Variety of small systems: p+Al, p+Au, d+Au, and ³He+Au

- Nuclear Modification Factor versus Rapidity
 - → Backward Rapidity: no suppression
 - → Forward Rapidity: observe suppression

Allow systematic study of cold nuclear matter effects involved in φ meson production using models like AMPT and EPOS.

See also talk by Murad Sarsour PSS Thur. 10:00

Fraction of J/ψ from B decays in p+p Collisions

Forward Silicon Vertex detector (FVTX): Measure $B \rightarrow J/\psi \rightarrow \mu^{\pm}$

- B's measured down to p_T = 0!
- New results: measured in p+p at 200 GeV

Clear energy dependence

Fraction of J/ψ from B decays (Cu+Au)

- Now using the measured B→J/ψ fraction in p+p @ 200 as the baseline (see previous slide)

- Non-prompt J/ψ R_{CuAu} consistent with binary scaling
- Non-prompt J/ψ R_{CuAu} consistent with nPDF EPS09 initial state effets

 Non-prompt J/ψ in contrast to highly suppressed prompt J/ψ

See also talk by Hachiya Takashi PSHF4 Fri. 17:05

Separation of Charm and Bottom in AuAu Collisions

Silicon Vertex Detector (VTX): Measure D,B mesons → e[±]

- Using "unfolding" method PRC 93, 3, 034904 (2016)
- New results:0-10% AuAuat 200 GeV
- Clear separation
 of charm/bottom
 for p_T < 5 GeV/c
 R_{AA}(c→e) < R_{AA}(b→e)

Separation of Charm and Bottom in AuAu

Silicon Vertex Detector (VTX): Measure D,B mesons → e[±]

 Using "unfolding" method PRC 93, 3, 034904 (2016)

New results:0-10% AuAuat 200 GeV

- Transport (Langevin):
 Reasonable agreement
 at low-p_T
- Theory needs large coupling!More extreme separation?

Collective Dynamics in Small Systems

Courtesy of Richard Seto, Lake Louise 2017 $\varepsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle}$								
System (0-5%)	N _{participants}	N _{collisions}	ϵ_2	$\boldsymbol{\varepsilon}_3$				
Au+Au	347	946						
³ He+Au	25	26	0.50	0.28				
d+Au	17	18	0.54	0.19				
p+Au	10	11	0.23					

EXPECT for v_2 (elliptic flow) : ${}^{3}\text{He} + \text{Au} \sim \text{d} + \text{Au} > \text{p} + \text{Au}$

EXPECT for v_3 (triangular): ${}^3He + Au > d + Au$

v₂ (Elliptic Flow): ³He+Au, d+Au, p+Au and p+Al

v₂ (elliptic flow) charged hadrons

Estimate of "non-flow" included systematic error)

Estimate of "non-flow" included systematic error)

v₂ (elliptic flow): ³He+Au ~ d+Au

v₂ (elliptic flow) is developed for even for p+Al Collisions (N_{participants} ~ 6)

v₂ (Elliptic Flow): ³He+Au, d+Au, p+Au and p+Al

Mass ordering π , p?

Mass ordering characteristic of hydrodynamic behavior

What about v₃ (Triangular Flow)?

What about Quenching in Small Systems?

- System size dependent enhancement at p_{T}^{\sim} 5GeV/c:

 $R_{p+Au} > R_{d+Au} > R_{3He+Au}$

Linear pseudorapidity dependence:

- → Backward enhancement p+Au > p+Al
- \rightarrow Forward suppression p+Au \approx p+Al

Summary

♦ Without Doubt RHIC is Amazing QCD Machine

♦ Many Species, Many Energies, and High Luminosity and Stability.

♦ Strangeness in Small Systems

 \diamond The PHENIX experiment measured ϕ meson production in p+p, p+AI, p+Au, d+Au, Cu+Cu, Cu+Au and Au+Au collisions with a wide range in p_T and rapidity to study cold and hot nuclear matters' effects. The ϕ meson cross section exhibits increase from RHIC to LHC energies.

♦ Open Heavy Flavor Nuclear Modification Factor

♦ New measurements 0-10% AuAu at 200 GeV show clear separation of charm and bottom for p_T < 5 GeV. Analyzing full data set and reduce systematic errors for the high-p_T range are crucial for clear separation of charm and bottom.

♦ Collective Dynamics in Small Systems

♦ PHENIX has measured Flow, v_2 (elliptic) v_3 (triangularity) in a variety of small systems at $\sqrt{s} = 200$ GeV. v_2 (elliptic flow) is developed for even for p+Al Collisions ($N_{participants} \sim 6$). Without doubt, these results became a challenge to many models and final physics interpretation still work in progress.

PHENIX has lots of data left to analyze, and more surprises are expected.

