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INTRODUCTION 

During the past two decades, our concept of an elementary particle has 
undergone a fundamental change. We now understand hadrons as bound 
states of quarks, and thus as composite. In strong interaction physics, 
quarks have become the smallest building blocks of nature. But the binding 
force between quarks increases with the distance of separation, making it 
impossible-as far as we know today-to split a given hadron into its quark 
constituents. If we insist on individual existence, the hadron remains 
elementary. 

This modification of our hadron picture has led to remarkable con­
sequences in strong interaction thermodynamics: at high density, nuclear 
matter must become a quark plasma. In return, strong interaction 
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thermodynamics has shown us the limits of quark confinement: in 
sufficiently dense matter, quarks can become free. 

Such high densities prevailed in the very early universe, until about 10-6 
seconds after the big bang; only then were quarks confined to form 
hadrons. To create and study such a primordial plasma in the laboratory is 
one of the great challenges for current experimental physics. Various 
estimates (e.g. 1) indicate that the collision of heavy nuclei at very high 
energies may indeed produce a terrestrial "little bang," providing short­
lived bubbles of the quark-gluon plasma. First experiments toward this 
ultimate goal are expected to start in the summer of 1986, using existing 
accelerators at Brookhaven National Laboratory and at CERN. A 
dedicated large-scale machine for this purpose was recently proposed (2). 

Phenomenological indications for critical behavior in strong interaction 
thermodynamics were first seen quite early (3). However, these consider­
ations were based on the dynamics of elementary hadrons and thus could 
only indicate at what point the resulting statistical mechanics was expected 
to break down ; they said nothing about what might happen beyond that 
point. The advent of the quark model suggested a new state of matter, and 
quantum chromodynamics (QeD) supplied the theoretical basis for a two­
phase picture of strongly interacting systems. 

The perturbative evaluation of QCD at small coupling leads to an 
equation of state for the quark-gluon plasma in the high-density limit (e.g. 
4). It breaks down at sufficiently low densities-a result that has also been 
taken as an indication for critical behavior (5, 6). In this approach, it is the 
low-density regime that remains unattainable. 

To cover the entire density range of strong interaction thermodynamics, 
a nonperturbative evaluation method for QeD is necessary. The lattice 
formulation (7) provides the basis for such a method-so far, the only one 
we have. It leads to a partition function whose form is that of a generalized 
spin system and which can therefore be dealt with by methods developed in 
statistical physics. 

In lattice QeD, the existence of a deconfined phase is now rigorously 
established (8). First indications for a deconfinement transition had in this 
context been obtained in the strong coupling approximation (9a,b). The 
real breakthrough occurred, however, when it became clear that the lattice 
formulation of QeD could be evaluated by computer simulation (10). After 
initial studies of the confining potential, this method was quickly extended 
and applied to gauge field thermodynamics (11-13). Today, it is used 
extensively in studying the phase structure and the features of strongly 
interacting matter as they are predicted by QeD. 

The first part of this article is .an introduction to the conceptual basis of 
critical phenomena in strongly interacting matter and to the formulation of 
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QUARK-GLUON PLASMA 247 
statistical quantum chromodynamics. In the second part, we summarize the 
results so far obtained in the lattice evaluation of QCD thermodynamics 
and attempt to assess their reliability. The final part presents some 
particularly interesting open questions as well as a few comments on the 
present status of the experimental attempts to study strong interaction 
thermodynamics. 

STATISTICAL QUANTUM CHROMODYNAMICS 

The Gauge Field Theory of Strong Interactions 

Quantum chromodynamics (QCD) describes the interaction of quarks and 
gluons in the form of a gauge field theory, very similar to quantum 
electrodynamics (QED) of electrons and photons. In both cases we have 
spinor matter fields interacting through massless vector gauge fields. In 
QCQ, however, the intrinsic color charge is associated with the non­
Abelian gauge group SU(3), in place of the Abelian group U{I) for the 
electric charge in QED. The quarks thus carry three color charges, and the 
gluons, transforming according to the adjoint representation, carry eight. 
The intrinsic charge of the gauge field is the decisive modification in 
comparison to QED ; it makes the pure gluon system directly self­
interactive, in contrast to the ideal gas of photons. As a result, the three­
dimensional Laplace equation, which in nonrelativistic QED leads to the 
Coulomb potential V '" llr, becomes effectively one-dimensional for 
massive quarks, with the confining potential V '" r as the solution. 

The Lagrangian density of QCD is given by 

It' = -!F�vF�v -'liH(i$-gJ)'J.fJt/l6, 1. 
f 

with 

2. 

Here Aa denotes the gluon field of color a (a = 1, ... ,8) and t/I� the quark 
field of color a (a = 1, 2, 3) and flavor f We restrict ourselves here to the 
effectively massless u and d quarks, which suffice to form all nonstrange 
mesons and baryons. Strange and exotic quarks are much more massive 
and hence thermodynamically suppressed at finite temperatures. The 
inclusion of quark masses would add a term 

It'm = "I m ifiN�,f 3. 
f 

in Equation 1. The structure functions fb� are fixed by the color gauge 
group, whose generators we denote by A.a ; with them, we define A = A a A.a12 
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in Equation 1. The generators satisfy 

[Aa, Ab] = if:bAc' 4. 

If we would set f = 0, the Lagrangian density (Equation 1) would simply 
reduce to that of QED, as there would then be no self-interaction among the 
gluons. 

Equation 1 contains one dimensionless coupling constant, g, and hence 
provides no scale. The resulting invariance under scale transformations 
implies that QCD predicts only the ratios of physical quantities, not 
absolute values in terms of physical units. 

In QCD, hadrons are color-neutral bound states of quarks or of quark­
antiquark pairs ; they are thus the chromodynamic analogue of atoms of 
positronium as the electrically neutral states in QED. In both cases is the 
binding radius determined as the point at which the attractive potential just 
balances the kinetic energy required by the momentum uncertainty at that 
spatial localization. The difference between the two theories becomes most 
significant at large distances: while a finite ionization energy AE suffices to 
break the electrodynamic bond, this is not possible in the case of quark 
binding. 

As the fundamental theory of strong interactions, QCD must then 
predict the ratios of all hadron masses as well as describe hadronic 
scattering processes. The successful application of perturbative QCD to 
scattering at large momentum transfer was decisive in establishing it as the 
basic theory (e.g. 14). The hadronic mass spectrum is presently under 
intensive investigation, and calculations seem to be well on the way toward 
definitive results (e.g. 15). Here we take QCD as the dynamical input needed 
for the statistical description of strongly interacting matter. 

The Physical Basis for Deconfinement 
For composite hadrons of nonvanishing spatial extension, the concept of 
hadronic matter appears to lose its meaning at sufficiently high density. 
Once we have a system of mutually interpenetrating hadrons, each quark 
finds in its immediate vicinity, at a distance of less than a hadron radius, 
many other quarks. There does not seem to be a way for a given quark to 
identify those other quarks which at lower density were its partners in some 
specific hadron, and we should therefore now consider the system as quark 
matter. 

The mechanism for the deconfinement of quarks in dense matter is 
provided by the screening of their color charge (9b, 16). In dense atomic 
matter, the long-range Coulomb potential that binds ions and electrons 
into electrically neutral units is partially screened by the other charges 
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QUARK-GLUON PLASMA 249 

present and thus becomes of much shorter range, 

e�/r � (eUr) exp ( -rlro). 5. 

Here r denotes the distance from the probe to the charge eo. The Debye 
screening radius ro is inversely proportional to the charge density n, 

6. 

Hence, at sufficiently high density, ro will become smaller than the atomic 
binding radius r A. A given electron can now no longer feel the binding force 
of "its" ion and it is therefore set free ; at this point, insulating matter 
becomes electrically conductive (17). We expect deconfinement to be the 
chromodynamic analogue of this Mott transition. Since screening is a 
phenomenon occurring at high density and hence at short range, the 
difference between electrodynamic and chromodynamic forces at large r 
here is not important. Moreover, the decrease of the color charge with 
increasing density, resulting from asymptotic freedom (e.g. 18), further 

enhances the deconfinement. 
The color conductivity of strongly interacting matter thus constitutes a 

rather natural signal for the deconfinement transition: it should vanish for 
normal hadronic matter as the color insulating state and become nonzero 
when the system turns into a plasma and hence a color conductor. In 
insulating solids, however, the electric conductivity (Te for T > 0 is not 
strictly zero, but only exponentially small (17), 

(Je � exp ( - AEIT), 7. 

with AE denoting the ionization energy. Above the Mott transition 
temperature, (T. is significantly nonzero because Debye screening has 
globally dissolved the Coulomb binding between ions and electrons, but 
even below this point, thermal ionization can locally produce some few free 
electrons, making (J. small but nonzero. The corresponding phenomenon in 
QCD is the production of a quark-antiquark pair in form of a hadron (19). 
lf we try to remove a quark from a given hadron, the confining potential will 
rise with the distance of separation until it reaches the value mH of the lowest 
qq state; at this point, an additional hadron will form, whose anti quark 
neutralizes the quark we were trying to remove, and the separation thus 
becomes possible. Local hadron production therefore plays the role of 
ionization, and we expect that the color conductivity (J c will not vanish in 
the confinement regime, but instead be given by 

8. 

where mH is the mass of the lowest qq state. Both electric and color 
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250 SATZ 

conductivity should vanish identically at T = O. In the chromodynamic 
case, however, we can let mH -+ 00 and consider the thermodynamics of a 
pure gauge field system. In this case, we expect from Equation 8 

{- 0 
(Jc > 0 T >  7;,' 

9. 

so that here (J c should vanish in the entire confinement regime and thus 
form a true order parameter for the deconfinement transition. 

Lattice QeD at Finite Temperature 
With the Lagrangian density (Equation 1) provided, the formulation of 
statistical QCD becomes, at least in principle, a well-defined problem. We 
have to calculate the partition function 

10. 

In the trace we have to sum over all physical states accessible to a system in 
a spatial volume V; p-l = T denotes the physical temperature. Once 
Z(P, V) is obtained, we can calculate all thermodynamic observables in the 
canonical fashion; thus 

e = (-ljV)(o In Zjop}v 11. 

gives us the energy density, and 

P = (ljP)(o In ZjoV)p 12. 

give us the pressure. 
In practice, the evaluation of statistical QCD encounters two main 

obstacles. Perturbative calculations lead to the usual divergences of 
quantum field theory; we thus have to renormalize to obtain finite results. 
Moreover, we want to study the entire range of behavior of the system, from 
confinement to asymptotic freedom-i.e. for all values of the coupling. That 
is not possible perturbatively ; we need a new approach for the solution of a 
relativistic quantum field theory. It is provided by the lattice regularization 
(7). Evaluating the partition function on a large but finite lattice whose 
points are separated by multiples of some spacing a, we have Ija as largest 
and Ij(N a) as smallest possible momentum; here N a is the linear lattice size. 
Hence neither ultraviolet nor infrared divergences can occur at finite Nand 
nonzero a. We are left with two questions, however: how can we ensure that 
physical observables are independent of this regularization, and how can 
we actually carry out calculations? Renormalization group theory answers, 
as we discuss below, the first of these questions. The Monte Carlo 
simulation of the lattice form of statistical QCD then allows us to carry out 
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QUARK-GLUON PLASMA 251 

calculations of thermodynamic observables at any coupling-thus answer­
ing the second question. 

The lattice formulation of statistical QCD is obtained in three steps. First 
we replace the Hamiltonian form (Equation 10) of the partition function by 
the corresponding Euclidean functional integral (20) 

ZE(P, V) = f (dA dt/l dr]/) exp [ -Iv d3x f: dr .<£'(A, t/I, r]/)]. 13. 

This form involves directly the Lagrangian density, and by integrating over 
field configurations, we avoid having to project onto the allowed physical 
states in the trace (Equation 10). The spatial integration over .<£' is 
performed over the entire volume of the system, which in the thermo­
dynamic limit becomes infinite, while in the imaginary time r == ixo, the 
integration runs over a finite slice determined by the temperature. The finite 
temperature behavior of the partition function thus becomes a finite size 
effect in the integration over •. Equation 13 is obtained from the trace form 
in Equation 10. As a consequence, the vector (spinor) fields have to be 
periodic (antiperiodic) 

A(x,. = 0) = A(x,. = p), 
t/I(x,. = 0) = -t/l(x,. = P), 
r]/(x, r = 0) = - r]/(x, r = p), 

at the boundaries of the imaginary time integration. 

14. 

Next, the Euclidean x-r manifold is replaced by a discrete lattice, with 
N q points and lattice spacing aq in each space direction, and N < points and 
spacing a, for the r axis. The overall space volume thus becomes V = 

(N"a,,?, the inverse temperature p-l = N,a,. The spin quark fields 1/1 and 

r]/ are now defined on each of the N!Nt lattice sites. To ensure the gauge 
invariance of the formulation, the gauge fields A must, however, be defined 
on the links connecting each pair of adjacent sites (21). 

In the final step. the integration over the gluon fields is replaced by one 
over the corresponding gauge group variables 

15. 

with Xi and Xj denoting two adjacent lattice sites; thus Vij is an SU(3) 
matrix associated to the link between these two sites. 

The QCD partition function thus becomes on the lattice 

Z(N '" Nt; g2) = f fl dl/li dr]/; f1 dVlj exp [ - S(r]/, t]/, V)], 16. 
sites links 
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a form somewhat reminiscent of the partition function of a spin system, with 
"', iii, and U in place of the spin configurations. The QeD action S in the 
Wilson formulation (7) has the form 

S = SG+SQ' 

with (13) 

6 a" " 1 
+ 2" - L... (1-3Re Tr UUUU) 

gt at P, 

17. 

18. 

for the action corresponding to the pure gauge field term F:vF�v of the 
Lagrangian density (Equation 1). It contains two distinct coupling 
parameters, g" and gt; these are necessary as long as we consider the spatial 
and temporal lattice spacings a" and at as independent variables (22). If we 
set a" = at == a, then, we recover one "isotropic" coupling 

19. 

The actual form of the action SG is that of a generalized, gauge-invariant 
Ising model (21). For the usual Ising model, we have a lattice sum over the 
interactions of next-neighbor spins, 

20. 
next neighbors (i,i) 

In Equation 18, the spin variables Si are generalized to the SU(3) color 
group matrices U, and in order to maintain gauge invariance, the product 
of next-neighbor spins is replaced by that over the four "spins" around the 
smallest possible closed path in the lattice ("plaquette"). The two terms of 
Equation 18 thus denote summations over space-space and space-time 
plaquettes, respectively. 

The quark action SQ in the Wilson formulation of Equation 1 is given by 

21. 

where the interaction matrix M depends on direction: 

Mp.,nm = (l-Yp.) Unmbn,m-iL+(l +Yp.)U.!nbn,m+iL· 22. 

Here fl is a unit vector along the lattice link in the f1 direction. The quark 
coupling strength, the "hopping parameter" K, at finite temperature also 
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depends on the link direction, just as 9 does. The scalar product KM is 
3 

KM == K,Mo+Ka L Mw 
,,=1 

The hopping parameter also reduces to one variable for a" = at == a: 

Kt(a) = K,,(a) = K. 

23. 

24. 

Since the basic Lagrangian in Equation 1 contains only one coupling, the· 
introduction of a separate quark coupling is a lattice artifact; K must in 
principle be expressible in terms of g. For massless quarks we have in fact 
(23) 

25. 

for sufficiently small g2. 
With Equations 16-18, 21, and 22, we have a completely defined lattice 

formulation for the QeD partition function. It gives us Z[N",Nt>g = 

(g" ga)]. To obtain the desired physical partition function Z(P, V) and the 
resulting thermodynamic observables, we choose aa = at (of course, after 
carrying out differentiations such as needed in Equations 11  or 12). The 
coupling 9 can then be related to the lattice spacing a by the asymptotic 
renormalization group relation 

with the following reasoning. We want our lattice formulation to provide 
results independent of the specific lattice used in the evaluation. 
Renormalization group considerations assure us that this is the case in the 
vicinity of the fixed point 9 = 0; if coupling 9 and lattice spacing a are 
related through the equation 

a dg(a)jda = B(g), 27. 

for 9 -+ 0, we then recover the continuum theory. Here B(g) is a function of 9 
only; for small 9 it can be determined in a perturbation expansion, leading 
to Equation 26, with AL as a dimensional integration constant. In 
quantitative studies, we must ascertain that at the coupling values used, this 
solution is indeed valid; although some deviations occur, this seems to be 
the case for the larger lattices presently used in numerical work (24). With 
a(g) given by Equation 26, we then have V = (Naa)3 and P = (N,a); this 
yields Z(P, V) from Equation 16 for given N", Nt> and g. 

All physical quantities are through Equation 26 measured in units of the 
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lattice scale AL. As mentioned, the Lagrangian (Equation 1) contains no 
dimensional parameter, and hence AL is arbitrary. We can thus either 
consider dimensionless ratios of observables, or calculate a specific 
quantity, such as the proton or p meson mass, to fix AL in physical units. 

To what extent now is this lattice formulation of statistical QeD 
equivalent to the continuum form of Equation 13? By letting a = (Xi -Xj) in 
Equation 15 and subsequently go to zero, we recover the continuum 
formulation, Equation 13. The converse is not true, however: neither the 
gluon action (Equation 18) nor the quark action (Equation 22) are unique; 
various other forms have been considered, which give the same continuum 
limit (25-31). All physical results should, of course, be independent of the 
specific choice of action, and finite temperature thermodynamics provides a 
particularly sensitive test of this "universality." So far, it appears to be quite 
well satisfied (32). 

The quark action leads to some additional problems. If we simply put 
fermions on the lattice by associating a spinor field with each lattice site, 
then the derivative in the Lagrangian (Equation 1) leads to the appearance 
of sixteen degenerate fermions per flavor (7, 30). To avoid this species 
doubling, Equation 22 gives fifteen ofthese quarks a mass m, with m -4 00 in 

the continuum limit. Such a procedure, however, also has its difficulties. The 
continuum Lagrangian (Equation 1) for massless quarks is invariant under 
chiral transformations (18): massless fermions decompose into indepen­
dent left-handed and right-handed particles. This invariance is broken in 
Wilson's lattice form Equations 21 and 22; it is recovered only in the 
continuum limit. It can in fact be shown (33) that the lattice formulation for 
massless fermions leads to species doubling, to chiral symmetry breaking, 
or to nonlocal derivatives. The choice of action thus is to some extent 
dictated here by the problem under investigation. And it is all the more 
important to check if all formulations lead to the same results. 

THE COMPUTER SIMULATION OF 
STATISTICAL QCD 

In the preceding section we saw that the lattice formulation of statistical 
QeD provides a partition function quite similar to that of a generalized 
spin system. Because even simpler spin systems, such as the three­
dimensional Ising model, so far have not been solved analytically, it is not 
surprising that we also have to take recourse to the standard evaluation 
method for statistical systems-computer simulation. The advent of 
modern supercomputers has made the simulation of statistical QeD 
possible for quite large lattices. Here, as in many other areas of statistical 
physics (e.g. 34), computer experiments constitute a viable method of 
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obtaining quantitative predictions for systems with many degrees of 
freedom. 

We noted above that the interaction decisive for confinement is con­
tained in the pure gauge field part of the Lagrangian (Equation 1). Gauge 
field thermodynamics, without quarks, therefore provides a meaningful 
model for studying the deconfinement transition. As it also imposes less 
severe computer requirements and avoids the difficulties encountered in the 
lattice formulation of quarks, it was the first case to be taken up. We follow 
this order of development and begin with the thermodynamics of SU(N) 
gauge fields; to compare the critical behavior of spin and gauge systems, it is 
of interest to keep N general here. After that, we go on to include dynamical 
quarks. 

Gauge Field Thermodynamics 

The partition function for the SU(N) gauge field system on the lattice is 
given by (13) 

Z(N".N"g2) = II!. dU exp [-So(U)], 28. 

with 

So(U) = 2� �-1 I(I- � Re Tr UUUU) 
g" p. N 

+ 2� �I(l- � Re Tr UUUU). 
gt P, N 29. 

Here � =" a"lat; for N = 3, we recover Equation 18. For the energy density 
(Equation 11), we obtain 

30. 

with P (f and Pt denoting the lattice average of space-space and space-time 
plaquettes. respectively : 

P" = (3N;NtZ)-1 I n dU exp[So(U)] [I(l- � Re Tr UUUu)], 
1mks � N 

31. 

and similarly for Pt' The Euclidean form of the partition function differs 
from the Hamiltonian version by a normalizing factor corresponding to the 
T = 0 contribution (20). To take this into account, we have subtracted in 
Equation 30 from P" and Pt the plaquette average P calculated on a large 
symmetric lattice, of size N: or larger ; for the values of N" usually 
considered, it gives a good approximation of the zero-point contribution. 
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The constants c� and c� in Equation 30 arise from the differentiation of the 
couplings Oa and Of with respect to the temperature ; they have been 
calculated explicitly (35). 

Returning for a moment to the structure of Equation 30, we note that the 
energy density of the gauge field system is obtained from plaquette 
averages, i.e. from the lattice average of the product of four adjacent "spins" 
around the smallest closed loop in the lattice. This is the gauge theory 
equivalent of the conventional Ising model, where the energy would involve 
the lattice average of the product of two adjacent spins. 

For the actual evaluation we now simulate on a computer the N� x N, 
lattice, choosing for convenience ( = aa/a, = 1. For a given g, we place on 
each link a specific SU(N) matrix U, taking for example all U = 1 (ordered 
or "cold" start), or randomly distributed U's (disordered or "hot" start). 
Proceeding from this initial configuration, we then assign to every link of 
the lattice step by step a new matrix U', randomly chosen with the weight 
SG(U), After sufficiently many sweeps through the lattice ("iterations"), the 
plaquette averages stabilize to give P a and P, at the chosen value of g. Using 
the renormalization group relation (Equation 26), we have the correspond­
ing temperature-if the chosen g is sufficiently small for this relation to be 

applicable. 
In Figure 1, we show the energy density thus obtained for the SU(2) 

system, based on calculations using a 103 x 3 lattice (13); here e is 
normalized to the idea! gas limit 

32. 

1.0 ----- -- - - -- ---- - - - - -- -- - - - --------- --- ----

! f 

0.5 

o -- ---f--f-t ! 
10 20 100 150 200 300 500 

T /.IlL 
Figure 1 The energy density 8 of the SU(2) gauge field system, normalized to its ideal gas limit 
8gB; from (13), on a 103 X 3 lattice. 
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Figure 2 The energy density e of the 
SU(3) gauge field system, normalized to 
its ideal gas limit "sB; from (37), on an 
83 x 3 lattice. 

At high temperatures, the system is seen to behave essentially like a gas of 
noninteracting gluons. Around T = 40AL, there is a sudden drop in 8, and 
below this temperature, the behavior of the system agrees reasonably well 
with that of an ideal gas of gluonium states of mass mG � 1 GeV (36). In 
Figure 2, the corresponding result is shown for the physically more 
interesting SU(3) case, evaluated on an 83 x 3 lattice (37). The behavior is 
quite similar, but the transition now occurs at T � 80AL and is 
discontinuous. 

We noted above that the lattice scale AL is arbitrary. If we take in each 
case results for the string tension (J at a comparable value of 9 (10, 38) and 
use the physical value Ja � 400 MeV, then both the SU(2) and the SU(3) 
system undergo the transition around 

7;, � 150-200 MeV. 33. 
To assure that the change of behavior exhibited by 8 is indeed due to the 

deconfinement transition, a corresponding order parameter is needed. It is 
obtained by noting that the lattice action (Equation 29) possesses a global 
symmetry under the center ZN of the SU(N) gauge group (9a,b). The specific 
state, in which the system finds itself, may spontaneously break this 
symmetry, just as the ordered phase of the Ising model breaks the global Z 2 

symmetry of its Hamiltonian. We are thus looking for the gauge theory 
analogue of the spontaneous magnetization. It is given ( 1 1 ,  12) by the 
average of the Polyakov loop 

1 N 
Lx(U) = - Tr TI Ux;t,t+b 34. 

N t=1 

consisting ofthe product of all the U's in the temperature direction taken at 
a given spatial site x. This product becomes a closed loop and thus gauge 
invariant by the periodicity condition (Equation 14). While SG is invariant 
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0.5 

0.25 

. 
o 

,. 

'. 

o. 0 L-.L...JL.L.L.J...J..L,l:-.0--!--'--L...L.LL..l..J:,'0�.0"---L...-' 
T ITe 

0.8 

04 

� 
O������-·�,--�,�-50 70 90 110 T II1L 

Figure 3 (Left) The deconfinement order parameter L of the SU(2) gauge field system, as 
function of rtf., with T. = 43 AL; from (32), on a 103 x 3 lattice, using different actions. 

Figure 4 (Right) The deconfinement order parameter L of the SU(3) gauge field system; from 
(39), on an 83 x 2 lattice. 

under global ZN transformations, the average L, taken over the lattice and 
over configurations, acquires a factor exp (2rni/N), with 0 ::; r ::; N -1, and 
thus serves as an indicator for spontaneous symmetry breaking: it is zero 
for Z N-symmetric states and nonzero if this symmetry is broken. The 
physical content of the change in symmetry becomes evident by noting that 
L measures the free energy F of a static quark (11, 12): 

35. 

In the confinement regime, F = (fJ and hence L = O. Once color screening 
becomes effective, F becomes finite and hence L nonzero.! The transition 
from the confined to the deconfined state of the SU(N) gauge system is thus 
characterized by the spontaneous breaking of the global center ZN 
symmetry. 

In Figures 3 and 4 we show lattice results for L (32, 39). It thus is clear that 

1 This is true provided we remain in the same ZN phase throughout, which we choose to be 
the one with r = O. 
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the transition seen in the energy density behavior is indeed due to 
deconfinement. The nonzero values of L in the confinement regime 
observed in Figures 3 and 4 are finite lattice size effects (40). The abrupt 
change of 8 in Figure 2 and that of L in Figure 4 suggest that the transition is 
of first order for the SU(3) system; more detailed studies confirm this (39, 
41). The continuous behavior of both 6 and L for the SU(2) system, on the 
other hand, points toward a higher order transition. 

This difference in critical behavior for SU(2) and SU(3) gauge systems is 
in accord with a universality conjecture relating spin and gauge systems (42, 
43). By integrating out all degrees of freedom in the partition function 
(Equation 28) except for the Polyakov loops (Equation 34) on all sites, one 
obtains from SU(N) gauge theory a system structurally equivalent to a ZN 
spin theory of the same spatial dimensionality. As a result, we expect these 
theories to show the same critical behavior, and in fact Z 3 spin theory (the 
Potts model) has a discontinuous order/disorder transition (44), while that 
of the Z2 spin theory (the Ising model) is continuous. More specifically, the 
critical exponents for the deconfinement transition in SU(2) gauge theory 
and for the order/disorder transition of the Ising model appear to agree (45), 
as would be expected if the two theories belong to the same universality 
class. 

Before concluding our survey of gauge field thermodynamics, we want to 
consider the reliability of the lattice evaluation. The lattice regularization 
cuts out low and high momenta, which affects even a noninteracting system. 
This problem can, however, be controlled by comparing gauge theory 
results with those for an ideal gas evaluated on a lattice of the same size (46). 
The crucial question is whether the coupling values 9 used in the actual 
evaluation are sufficiently small to permit the use of the renormalization 
group relation (Equation 26). This would assure us that the results obtained 
correspond to the continuum limit of the theory. In Figure 5 we see a 
compilation of transition temperature and string tension data for the SU(3) 
gauge systems (24), shown as function of 6/g2• There are clear deviations 
from scaling, which requires that I;, and (f not depend on g; it appears 
possible that the asymptotic form (Equation 26) is valid for g2 ;5 1. Even at 
larger couplings, however, one finds that dimensionless ratios, such as 
TJfi in Figure-5, are independent of g. We thus conclude that the lattice 
results obtained so far are a very promising beginning, but that calculations 
on larger lattices, combined with finite-size-scaling considerations (47), are 
certainly necessary. 

QeD Thermodynamics with Quarks 

The extension of SU(N) gauge field thermodynamics to include matter 
fields has two fundamental consequences. 
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Figure 5 Present lattice results for the 
deconfinement temperature (solid and 
open circles, diamonds) and the string 
tension (solid and open squares, trian­
gles), both as function �f the inverse 
coupling 6/g2; from the compilation in 
(24) . 

The presence of the quark term in the Lagrangian (Equation 1) breaks the 
global invariance under the center of the gauge group (e.g. 48), which holds 
for the pure gluon system. The physical basis for this effect was already 
noted in a previous section; for T > 0, the color conductivity, just like the 
electric conductivity, does not vanish identically but is only exponentially 
small. With the global center symmetry broken, the average Polyakov loop 
L will also remain finite for all T > O. The distinction between the 
confinement and deconfinement regimes thus becomes somewhat more 
qualitative in nature (9b, 16, 49). 

The second new feature to appear is chiral symmetry. The Lagrangian 
(Equation 1) is invariant under the chiral transformation 

t/J -t t/J' 
= Yst/J, 36. 

where Y 5 is the pseudoscalar Dirac matrix, because it contains only the 
chirally invariant spinor forms i{lY/lt/J. This invariance would be broken by 
adding the quark mass term (Equation 3), since i{lt/J is not invariant under 
the transformation in Equation 36. Even for mf = 0, however, chiral 
invariance may be broken spontaneously; this would correspond to the 
spontaneous generation of an "effective" quark mass. Since the conduction 
electrons in a metal acquire an effective mass different from their mass value 
in vacuum, we may expect such a mass shift here as well. In the confinement 
regime, chiral symmetry is indeed broken, which leads to constituent 
quarks with an effective mass of about 300 Me V (for u and d quarks). In the 
deconfined plasma at high temperature, the quarks become massless again 
and hence chiral symmetry is restored. In the presence of massless matter 
fields, statistical QeD thus leads to another transition, from broken to 
restored chiral symmetry. 
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What is the relation between deconfinement and chiral symmetry 

restoration? At present, this question has no really satisfactory answer. 
There are good arguments that if the two phenomena are distinct, then 
deconfinement must occur at the lower temperature (50, 51): in general, 
confining potentials will break chiral symmetry. It may well be, however, 
that with the global ZN symmetry broken by the introduction of light 
quarks, the chiral transition becomes the basic mechanism making 
deconfinement a genuine phase transition (52). 

To obtain for the full partition function (Equation 16) a form suitable for 
computer simulation, one must integrate over the anticommuting spinor 
fields. This gives (53) 

Z (N,,,N,,g) = I n dU exp[ -SdU)] [detQ (U)]Nr, 37. 
links 

where 

Q(U) = [1-KM(U)] 38. 

denotes the fermion matrix in Equation 21. As it connects iii and 1/1 over the 
entire lattice, it is of dimension (12N!N,) x ( 12N!N,). The evaluation of the 
determinant of this very large matrix poses at present the main technical 
problem in the numerical evaluation. For reasonable lattice sizes, it has up 
to now been carried out only in several approximation schemes: 

1. In the hopping-parameter expansion (54, 55) 
00 KI 

In det (l-KM) = - Tr L - MI, 
1= 1 1 

39. 

only the first few leading terms are generally retained for the actual 
evaluation. 

2. In the pseudo-fermion method (56), the quark determinant is written 
as the integral over complex scalar fields <I> and CI> 

(det Q)-l = In d<l> dCI> exp[ -(CI>Q<I»], 
sItes 

40. 

which must then be evaluated by a separate Monte Carlo simulation for 
each configuration of U's. 

3. In the microcanonical approach (57), one considers an artificial 
classical system that is integrable and leads to the partition function 
(Equation 37). Solving the equations of motion for this system by methods 
from molecular dynamics, one can then replace the ensemble average 
(Equation 37) by the corresponding time average, provided ergodicity 
holds. 
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The next generation of supercomputers, both faster and with a much 
larger memory than those employed today, may perhaps bring a precise 
evaluation within reach. In any case, it is reassuring that all the results 
obtained so far agree quite well both qualitatively and quantitatively, even 
though the evaluation schemes differ considerably. In Table 1 we list the 
calculations carried out up to the end of 1984, indicating both the type of 
quark action and the fermion determinant scheme used. All find a sudden 
change in the energy density e, in L as a measure of confinement, and in the 
average of l/it/l as a measure of chiral symmetry. For a representative and 
perhaps most transparent case, we look at the results obtained using 
Wilson's form Equations 21 and 22 of the quark action, evaluated in the 
hopping-parameter expansion (Equation 39) (19). 

For lattices of small temporal extension (Nt � 3-5), the partition 
function (Equation 37) then has the form 

Z(N,,,N,,g) = fJI dU exp[ -Sefr<U)], 41. 

with 

Sect!.U) � SG(U)-4Nr<2,,)N, L Re L 42. 
sites 

�enoting the effective action in lowest order hopping-parameter expansion. 
Only closed loops contribute to Seff, and for small Nt the dominant 
contributions are those from Polyakov loops. We note that the action 
(Equation 41) has the structure of a gauge-invariant spin system in an 
effective external field (9b, 49, 61), whose strength is 4�(2,,)N'. For infinitely 
heavy ("static") quarks, " vanishes and we recover the pure gauge theory, 
with L = 0 in the confinement regime. For finite quark masses ("dynamic" 
quarks), " is finite and the external field nonzero; it breaks the global ZN 
symmetry an<Jj hence makes L #- 0 even when we have confinement. This is 
how the "ionization" mechanism of local hadron production, discussed 
above, enters the generalized spin picture. 

Table 1 Critical parameters in different fennion schemes 

Scheme N, Nf 6/g; T./A� Ref. 

Wilson ,,4 3 2 S.30±O.OS 131±8 19 

Wilson "s 3 2 S.2S±O.OS 123±8 19 

Kogut-Susskind, canonical 4 3 5.3 100 58 

Kogut-Susskind, canonical 2 2 4.6 89 59 

Kogut-Susskind, microcanonical 4 4 S.l 106 60 
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The energy density of the quark-gluon system has the form 

43. 

the gluonic contribution eG is again given by Equation 30, but the plaquette 
averages are now calculated with the effective action (Equation 41) instead 
of the pure gluon form (Equation 29). The quark contribution in the lowest 
order hopping-parameter expansion is given by 

eQ/T4 � 3N� N,(2"t' Re L. 44. 

The presence of dynamic quarks thus leads to a partial gauge field 
alignment in an effective external field, and eQ measures the degree of this 
alignment. 

In Figure 6, we show the resulting overall energy density calculated on an 
83 x 3 lattice (19), including terms up to ,,4 in the hopping-parameter 
expansion. The relation between " and g is given by Equation 25, that 
between g and a by Equation 26; we consider the case of two quark flavors. 
The energy density of the interacting system is again compared to the 
noninteracting gas limit eSB on a lattice of the same size ; also shown is the 
behavior of an ideal gas of n, p, and OJ mesons in all their possible charge and 
spin states. We see that the system at low temperature behaves like a meson 
gas ; around T / AL � 150 it undergoes a sudden transition, and above that 

E/ESB 
1.0 

¢ o 

0.8 

¢ 

0.6 

0.4 0 

0.2 � 
o �80�-1�OO����15�O--� 20�O --�25�O�3�OO---- 4 �OO����O--�600�-­

T/A�f=2 

Figure 6 The energy density in QeD with dynamic quarks, evaluated in hopping­
parameter expansion; from (19), on an 83 x 3 lattice. The solid curve corresponds to an ideal 
meson gas (n,p,w). 
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temperature it approaches the ideal gas limit. The deconfinment measure L 
parallels this behavior, as seen in Figure 7; note that with Equation 26, 
6/g2 � 5.3 corresponds to T/AL � 150. We can thus again associate the 
transition with deconfinement. It should be noted that while L is 
non vanishing in the confined regime, in accord with the broken Z N 

symmetry due to the presence of dynamic quarks, it is, however, quite small 
there. This agrees with the arguments (9b, 19) presented above, suggesting 
at most a small symmetry breaking. 

As lfi'" is not invariant under the chiral transformation (Equation 36), it 
provides an order parameter for chiral symmetry restoration. In lowest 
order hopping-parameter expansion, the lattice average of l/it/l takes the 
form 

<lfi",)/T3 '" (I-Re L), 45. 
so that chiral symmetry is broken in the deconfinement region, where L is 
small; it is restored as L approaches the ideal gas limit of unity. From 
Equation 42, it is clear that in this approximation the transition points for 
deconfinement and chiral symmetry restoration coincide. In Wilson's 
formulation for quarks on the lattice, however, the study of chiral symmetry 

restoration is not without problems. As was already mentioned, the 
spurious mass states are removed by making them very massive. It is 
therefore particularly important to check the transition points for the two 

l 

0.5 

0.25 

o �--�5�0�----�5�.5�----�6�.0�----�6�. 5� 
6/g2 

Figure 7 The deconfinement measure L in QeD with dynamic quarks, evaluated in 
hopping-parameter expansion ; from (19), on an 83 x 3 lattice. 
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Figure 8 Deconfinement measure Land chiral symmetry measure <1/11/1), evaluated in 
hopping-parameter expansion; from (19), on an 83 x 3 lattice. 

transition phenomena in other formulations as well. We show in Figures 8 
and 9 a comparison of L and <1fil/l)IT3 for Wilson quarks in the hopping­
parameter expansion (19) and for Kogut-Susskind quarks in the micro­
canonical approach (60): they agree very well, and still further calculations 
(58, 59) confirm this. It thus appears that deconfinement and chiral 
symmetry restoration in statistical QeD at vanishing baryon number 
density occur indeed at the same temperature. A further clarification of the 
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0.4 
0.2 
0 

Figure 9 Deconfinement measure L and chiral symmetry measure (iii"'), evaluated in the 
microcanonical approach; from (60), on an 83 x 4 lattice. 
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relation between these phenomena is an interesting challenge in statistical 
QeD. 

To conclude this section, we turn to the question of the actual value of the 
deconfinement temperature. In Table 1, we list the values of Yo obtained in 
the different approaches; for purposes of comparison, they are all converted 
into the units of AL for the zero-flavor case. The results of the hopping­
parameter expansion are expected to be slightly higher, as the quark masses 
are not yet very small, when we use Equation 25. Bearing that in mind, we 
see that deconfinement occurs roughly at 

T;jA� � 100, 46. 

to be compared with the value Tel A� � 80 for pure gauge field thermo­
dynamics on lattices of similar size. For a reliable conversion of this into 
physical units, we must wait until the evaluation of the hadron spectrum 
with dynamic quarks is completed (15). At present, the use of available data 
from comparable lattices gives 

r., � (200-250) MeV 47. 

as the most reasonable value. 

OUTLOOK 

Dense Baryonic Matter 

Statistical quantum chromodynamics predicts, as we have seen, a de­
confinement transition for strongly interacting matter of vanishing overall 
baryon number density. In a meson gas, color screening dissolves with 
increasing temperatur;e the binding between quarks and antiquarks, 
transforming the system into a chromoplasma of unconfined colored 
constituents. The decisive element in the screening mechanism is the 
increase of color charge density, which is here achieved by an increase of 
temperature resulting in particle production. Matter at high density can, 
however, also be formed by compressing a system of many nucleons at low 
temperature; this leads to a high density of baryons and hence also of 
quarks. 

The complete phase diagram of strongly interacting matter must thus 
describe the phase structure as a function of the temperature T and the 
baryon number density nB or the corresponding baryonic "chemical" 
potential /lB' SO far, quantitative predictions from QeD exist only for 
/lB = O. Extending these results to nonzero baryon densities is obviously 
one of the most urgent problems to be addressed by statistical QeD. The 
partition function (Equation 10) then becomes more generally 

48. 
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with N B denoting the operator for the overall baryon number. Only the first 
steps toward a viable lattice evaluation have yet been taken (62-65). 

In Figure 10, we show a possible schematic phase diagram for strongly 
interacting matter, which at /lB = 0 agrees with the results of the previous 
section. The coincidence of deconfinement and chiral symmetry restoration 
in that case does not imply similar behavior for T = 0 as a function of Jl.B' 
When, in a Mott transition, Debye screening dissolves the local binding 
between charges, this does not necessarily mean that a state of completely 
unbound constituents is the energetically most favorable one. Even beyond 
the transition point, collective binding mechanisms are still possible. The 
Cooper pairs in superconducting materials provide an example of a such 
bound state ; they can, however, exist only at very low temperatures because 
thermal motion quickly overcomes the binding force. Something similar 
could, at least in principle, also occur in strongly interacting matter at low 
temperature : beyond the deconfinement point, chiral symmetry could still 
be broken, thus providing us with a system of massive colored quarks as 
constituents. Increasing either the temperature or the baryonic chemical 
potential would convert this stage into the true chromoplasma of massless 
colored quarks and gluons. Statistical QCD will eventually tell us if such an 
intermediate phase-something like a color superconductor-really exists. 
For the time being, the question is completely open. 

Deconfinement and Nuclear Collisions 

To conclude our survey, we take a short look at the possibility of creating 
dense strongly interacting matter in the laboratory. For this, the collision of 
heavy nuclei seems to be our only, certaintly not perfect, tool. 

When two energetic hadrons undergo a central collision, they essentially 
pass through each other, leaving behind a streak of energy deposited in a 
certain space-time region. This energy subsequently decays into the 
observed hadronic secondaries. In a typical proton-proton collision, the 
energy deposited is about 0.3 GeV fm -3. For the formation of the quark­
gluon plasma, we need at least 2.5 GeV fm- 3, since e/T4 � 12 and r;, � 200 

T 

CHROMOPLASMA 
Figure 10 Schematic view of a possible 
phase diagram in QeD, as function of 
temperature T and baryonic chemical 
potential /lB' 
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MeV. The typical energy deposit achieved in a collision of two identical 
nuclei of mass number A is expected (24) to be about (1-3) A1/3 GeV fm- 3 ; 
for heavy nuclei, this is well above the critical value. This estimate assumes a 
constant deposit per unit rapidity and hence becomes independent of the 
collision energy. 

A sufficient local energy deposit does not, of course, guarantee the 
applicability of equilibrium thermodynamics to the process. The volume of 
space-time in question here is far from infinite. It is therefore crucial that the 
mean free path of quarks and gIuons in the resulting medium be sufficiently 
small in comparison to the size of the system. Only then can we expect a 
description in terms of an expanding plasma with a subsequent transition 
to hadronic matter to be meaningful. 

Assuming that in energetic nuclear collisions there is indeed plasma 
formation, how can we verify this experimentally? The discussion of 
signatures has so far not led to any unambiguous test, but rather to a 
number of supporting predictions (66). Since photons, because of the 
comparatively weak electromagnetic interaction, can escape unmodified if 
produced in the primordial plasma, they should carry information about 
this state (67). The transverse momenta of hadronic s�condaries act as a 

measure of the temperatures involved, and studying their dependence on 
initial energy density should produce evidence for the latent heat of 
deconfinement (68) depicted in Figures 2 and 6. Finally, if the initial plasma 
achieves an equilibrium even between the different quark flavors ("chemical 
equilibrium"), then the resulting flavor ratios should lead to observable 
consequences for the measured hadron ratios (69). 

These and a variety of other aspects of plasma formation in nuclear 
collisions have been and are at present the subject of intensive studies. The 
interest they trigger is perhaps best explained by recalling the ultimate aim 
of this field of research : an understanding of the states of matter in strong 
interaction physics. 
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