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Résumé. — Nous présentons un exposé détaillé du formalisme de la diffusion élastique nucléon- ‘ /‘/
_ nucléon en ajoutant de nouveaux résultats 3 ceux déja connus, Nous passons en revue plusieurs 5 W
représentations de la matrice de diffusion en tenant compte des principes de symétrie, notamment A
de la conservation de la parité, de 'invariance par renversement du temps, du principe de Pauli et de
Pinvariance isotopique. Les quantités expérimentales du systéme du centre de masse (c.m.s.) et du
laboratoire (1.s.) sont exprimées en fonction des amplitudes de diffusion. Les relations entre ces /
_ quantités, découlant des symétries mentionnées ainsi que des relations entre les quantités du c.m.s. .
d’un cbté et du ls. de Iautre sont citées en détail. Nous discutons ensuite une relation générale 7&
décrivant la distribution angulaire dans la diffusion corrélée qui comprend toutes les quantités R
expérimentales existantes ; a formule pour chaque expérience choisie peut en étre déduite en précisant )
les polarisations initiales et les pouvoirs analyseurs. Enfin, nous étudions les conséquences du prin- Y7 / (%'
0 F/a cipe de Pauli pour la diffusion de deux nucléons identiques, Nous exprimons les relations d’nne part i o
0 F/an entre les quantités dans le c.m.s. mesurées aux angles de diffusion 6 et © — 6 et d’autre part entre l// ;’L/
les quantités dans le Ls. aux angles associés 0, et 8,. Une attention particuliére est prétée aux angles v c:j
6 = n/2 du c.m.s. et 6, = 6, du Ls. Le contenu de Particle est susceptible d’intéresser des expéri-
0 F/a mentateurs et des phénoménologistes et plus spécialement ceux qui s’occupent de la reconstruction /ff - /
des amplitudes de diffusion a partir des données expérimentales. 1
Abstract. — A detailed exposition of the nucleon-nucleon elastic scattering formalism is presented, ré

reviewing known results and adding some new ones. Several different representations of the scattering
matrix are reviewed, paying attention to symmetry principles like parity conservation, time reversal
invarianee, the Pauli principle and iso-spin invariance. Experimental quantities in the centre-of-mass
and laboratory systems are expressed in terms of scattering amplitudes. Relations between experi-
mental quantities in each of these systems, following from the above mentioned symmetries, are
spelt out in detail, as are relations between l.s. and c.m.s. quantities. A general formula for the
angular distribution of correlated scattering is given and discussed. This formula involves all existing
experimental quantities. It can be specialized to describe any chosen experiment by specifying the
initial polarizations and final analyzing powers. Consequences of the Paulj principle for the scattering
of identical nucleons are studied. Relations between c.m.s, quantities measured at the c.m.s. angles 6
and = — 0 or at Ls. angles 8, and 6, (scattering and recoil angle) are obtained. Special attention is
paid to relations at § = n/2,i.e. §, = 6,. The material contained in this paper should be useful for
experimentalists and for phenomenologists interested in the reconstruction of scattering amplitudes
from data.

1. Intreduction. — The purpose of this article is to provide a detailed study of the kinematics of nucleon-
_ nucleon scattering. Since a large body of literature has already been devoted to this topic during the last 25 years
or so. some parts of this article will have the character of a unifying review, while others contain new results
for some of the original work and previous reviews see refs. [1-15]).

In section 2 of this paper we discuss the nucleon-nucleon scattering matrix M/, present and relate several
ifferent parametrizations of it and discuss the constraints on M following from invariance principles like
. parity conservation, time reversal invariance, the Pauli principle and isotopic invariance. In section 3 we define
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the concept of a pure experimental quantity (or a pure expetiment), i.e. one that ir‘lvolves.only spin projections
onto certain basis vectors in momentum space. We list 256 different pure expepm_ents in the centre of ‘mass
system and then find all the constraints on them, following from the invariance principles discussed in sectlo.n.z.
Nonlinear relations between c.m.s. experimental quantities are also discussed, as well as some inequalities
imposed on them. Pure experiments in the laboratory system are considered in s_eqtion 4. A general forrx}ula
describing the angular distribution of correlated scattering for the case when both initial nucleons are polarized
is presented. Simpler formulas relating various angular distributions to !aboratory system components .of
polarization tensors are obtained from the general formula e.g. by assuming that one or both of the initial
polarizations are zero and/or that one or both of the final polarizations are not de.tegted. The laboratory frame
components of the polarization tensors are expressed in terms of the scattering matrix in ?ables 5 aqd 6. The c.m.s.
and laboratory system pure experimental quantities are related to each other in section 5, taking I‘Cl‘athlSth
effects fully into account. Again, we first present a general formula for an arbitrary experimental quantity, then
consider the case where 1. 2, 3 or 4 polarizations are involved. In section 6 we establish linear relations between
laboratory system experimental quantities, following from the usual invariance principles. While these relations
are not independent of similar ones in the c.m.s., their form, taking relativistic spin rotations into account, is
considerably more complicated. In section 7 we discuss consequences of the Pauli principle. In addition to
restricting the number of independent amplitudes from 6 to 5 in the scattering matrix and thus significantly
restricting the number of independent experiments, the Pauli principle has further implications. Thus, for nn
and pp scattering we present all symmetry relations between quantities measured at the c.m.s. angles fandn — 6,
i.e. at laboratory system angles 8, and 8, (the scattering and recoil angles). Further, interesting relations for nn
and pp scattering are obtained when 6 = n/2, i.e. 8; = 8,, as well as relations between np and say nn experi-
mental quantities. Some conclusions and future outlook are mentioned in section 8.

- New results are contained in sections 3 to 7 and they mainly concern quantities involving polarized targets

 and especially the more complicated experimental quantities. While we give credit in cases when we use the

- results of other authors, we do not attempt to give anything like a complete bibliography of the field. We also
make little effort to relate the formalism of this article to the numerous equivalent formalisms in the literature.
A few words on conventions and notations are in order.

Throughout the paper we use one set of basis vectors in momentum space in the centre of mass system
.74nd three different sets in the laboratory frame (relating to incident, scattered and recoil particles). One and the
"#$ame normal to the scattering plane is used in all cases. While such usage is common to many workers in the
field, it is strictly speaking not in agreement with the Basle convention [16]. Indeed, if the convention is applied
exactly, then the polarizations of the scattered and recoil particles should be related to opposite normals. The
target normal in the laboratory system is not well defined. In any case, it is a simple matter to transform formulas
from the one-normal convention to a two-normal one. ‘

We consistently use a four-subscript notation for experimental quantities : X,,,;, where p and g refer to the
scattered and recoil particle polarizations and / and k to the initial beam and target polarizations. If an initial
particle is unpolarized or a final state polarization not analyzed, the corresponding subscript is set equal to zero.
This notation should help avoid some common misunderstandings in the identification of experimental quan-
tities. It also facilitates transitions between the one-normal and two-normal conventions and the establishment
of relations between various quantities. The use of different letters for different experiments is now superfluous
but for historical reasons we still use the letter / for intensities (cross sections), P for polarizations, 4 for asym-
metries, D and K for depolarization and polarization transfer tensors, M and N for the contributions of two

initial polarizations to the final polarizations of the scattered and recoil particle and C for polarization corre-
lations.

2. Nuclgon-nucleon scattering matrix, — For our purposes a convenient form of a nucleon-nucleon
elastic matrix is [3, 5, 11]

1
Mk, k) = 5 { (@ + b) + (a = b) (61, 1) (6, ) + (¢ + d) (65, m) (g, m) +

tle—d)(euD (02D +efo, +0m) ). Q.1

Here the amplitudes a, b_, ¢, d and e are complex functions of two variables, e. g. the centre of mass system (c.m.s.’
energy k and the scattering angle 6. The c.m.s. basis vectors are :

ke + Kk ki — k; k; x k
=~'——-—, m=w———— =ﬁt_ ’
& + K | K-kI° "“Thxk] 2.2

where _lq and ki are unit vectors in the direction of the i
The spin matrices ¢, and o,

vely. (The projection (o, a)

_ . ncident and scattered particle momenta in the c.m.s
(the Pauli matrices) act on the first and the second nucleon wave functions, respecti

of a spin matrix ¢ on an arbitrary direction a will be written also as (0, 3)=(ca)=0,

AN
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jections In (2.1) we have already taken into account parity and time reversal invariance. We have also assumed
of mass that the particles are identical which is strictly valid for pp and nn scattering. For np scattering this assumes
ction 2. isotopic invariance of the nucleon-nucleon interaction. The scattering matrix for the elastic scattering of two
[ualities nonidentical particles would contain a sixth term, namely

formula 1

olarized .'2-f(0'1 = Gz, M), 2.3)
1ents of

e initial

Still assuming isotopic invariance, we can write the scatteri

ng matrices for pp, nn and np scattering in terms
of two matrices M, and M, of the form (2.1), putting

'y frame
1€ C.m.s.

lativistic 1 - (t,,1,) 34 (2, 1,)

iy, then Mk, k) = M, [TZ ]+ M, [——(4——_] @.4)
between

-elations

where 1, and t, are the nucleon isospin matrices, and M,

sount, is respectively. Obviously we have

lition to
ificantly
5, for nn
drn — 0,

o and M, are isosinglet and isotriplet scattering matrices,

. M(pp — pp) = M(nn - nn) = M, ,
M(vp — np) = M(pn - pn) = (M, + M,)/2, 2.5
M(up — pn) = M(pn - np) = (M, — M,)/2.

as for nn
n experi- Formulas (2.4) and’(2.5), unlike all the others in this paper, refer only to strong interaction scattering
matrices, ignoring the electromagnetic interactions.
d targets The generalized Pauli principle for the nucleons implies certain symmetry conditions for the amplitudes
3 use the in (2.1), summarized in table I [5). '
We also
iterature. TasLe 1
Symmetry properties Jollowing from the generalized Pauli principle
‘ T=1 T=0

@) = —ai(n~0)  ay®) = agn — 6)
s bi(0) = — ci(n — 0) bo(0) = co(m — )
! ¢0) = —bi(m—0) o) = by(m — 6)
di@) = di(n -0  dyd) = — do(n — 6)
e,(0) = e(n — 0) eo(t) = — eo(n — 6) 1

Throughout this article we shall use the am
parametrizations are often useful.
Hoshizaki [8] uses the scattering matrix

plitudes a, b, ¢, d and e, although many different but equivafent

Mk, k) = ag + cy(6, + 0,5, 0) + my(64, n) (6,, n)
; + gul(04,1) (0, 1) + (61, m) (6,, m)] (2.6)
/ + h[©4, ) (02, 1) = (0, m) (05, m],

so-that
W=3@+h, =% m=le-8, =% b= -4 @.7)
whiich implies
a=ay+ my, b=ay — my, c=2¢9y, d= —2hy, e=2c¢y. 2.8
The so-called Wolfenstein amplitudes B, C, N, G, H[1] are defined as :
Mk, k) = BS + { C(6, + 6,,n) + N(o,, n) (6,, n)
+ %G[(al, m) (6,, m) + (¢,, 1) (55, )] 2.9

+ 3 HI©1,m) (52.m) — (@,.1) (6, ]} T,
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where S and T'are the spin-singlet and spin triplet projection operators, respectively :

1

S = Z[l - (64,62)], = %[3 + (04, 07)] -

The Wolfenstein amplitudes are related to ours as follows :

B=1b~-c, C=e¢2, N=a, G=a+b+c, H=d
which implies
a=N, d=H,

b=B-N+G_2, c=G-B-N)2,

The « singlet-triplet representation » matrix elements [17] are :

My=b-c
My = a + dcos 0

M, m%(a+b+c-dcost9)
1 .
Mg =——=(dsin0 + ie)
1o \/i

Moy = — —1—-2-(dsin9 ~ ie)

7

1
Ml"'l 2'2'("" a+b+c+ dCOSG) = Mll - MOO - '\/E(MIO + Mm)cotgf)

Moy =My, M_=M_, Myui=-M,y, M_io=—My,
which implies
1
a=§(M11+Moo“M1—1)
1
bzi(M11+M33+M1_1)
: .
c=5My - M+ M,_))
d= 1 (=M +Mp+ M )'—*———I—(M + My,)
2cos 0 o0 - \/Esin() 10 o1

i
€=——2(M10 - My,) .

7

_ Jacob and Wick [18] have developed the helicity formalism in which states are labelled by the spin projéc-
tion /1 onto the p.at"ticle momentum (4 is the helicity quantum number), Since there are some ambiguities in 3?16
definitions of helicity states and amplitudes we shall specify our formalism here. Essentially it will coincide with
that of Jacob and Wick [18], Martin and Spearman [19], Goldberger, Grisaru, MacDowel and Wong [15],

[21, 22] yise

Hoshizaki [8], etc. Other authors. e.g. Cohen-Tannoudji, Morel and Navelet [20] and Kotanski
somewhat different phase conventions (they omit the factor (= 1)*~*for particles 2 and 4).
We use the centre-of-mass system, consider the xz

scattered particles are

tre ‘ . plane as the scattering plane, put the z-axis along thie
momentum of the incident particle and the y-axis along the normal n. The helicity states of the incident an:

Ne | Nl F
and
(2.10)
(2.11)
The helicity states oi
(2.12)
and

I
fhe= (-1 e
2.13)

The helicity A for a nu
helicity amplitudes a1

whete d = A, — 4,. p

Parity conservation, ti

Tespectively. These rel
mply that the total he]

{ -

Taking these symn

o

M15<++|Ml+
M2‘5<++[M|~
M=y
o= (v o) -

My ¢ 4
@is| Chtiy
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and
1 ] 1 . 0
. (—2- + /13> €08 5 — (5 - 13> sin 5
Xis = €Xp | = iz"0 )z, = . (2.16)
2 L + A3 si 4 1. A sg
27 73S T g T A cosy
The helicity states of particles 2 and 4 are defined with a different phase as
1
- 3 + }.2
1 1 _ s 2
T = (= 1) “exp (— ifz-"n) T, = (= 1" { (2.17)
5 + AZ
and
1 . 0 1 0
, .y o, §os — (-2-+114)sm—2-~(§~14 cos§
Y =(=1" Texp|- IO +m) |2, =(-1) . (2.18)

1 6 1 . 6
(-2- + /14) cos 5 — (f - /14> sin

The helicity A for a nucleonis 1 /2if the spin projection is parallel to the momentum, — 1/2ifit is antiparallel. The
helicity amplitudes are denoted KAz |IM |22, and can be expanded into a partial wave sum as

(A3 da |M 242, =§1—”;;(2J+ D (344 | TUE) [ 2, 4, > d,(60) (2.19)

whered = A) — 4,. = 4, — A4 and dy,(0) are Wigner rotation matrices [23] satisfying

4,0) = (= D ali0) = (— 1% a,_(6). (2.20)

Parity conservation, time reversal invariance and the Pauli principle imply that

<‘/13_l4|TJ(E)|_)~1 “'12>=</13A4ITJ(E)|./11/12>
CA A [THEY A3 2> = Ay Ag | TUE) | 2y 2, 2.21)
CAads | THEY A 4> = (A3 A I TV E A 4y )

respectively. These relations for the partial wave helicity amplitudes together with (2.19) and (2.20) in turn
imply that the total helicity amplitudes satisfy

<‘/13 "/14|M|“'{1 “’12> =(" 1))"_12%3*'14(13'14lMl'11/12>
CAidg | M [ A3 4y ) = (= 1H—R~hatiag ) Ao [ M2 2. (2.22)
CAgd3 | M |20, ) = (— DH-hmdatda g A | M| Ay 2>

Taking these symmetry relations into account and indicating only the signs of the nucleon helicities, we put :

Mis{H+ M+ +>=(~ - |M|--)
CH+HIM] = =3 =(— - M|+ +)

=
il

M= =M+ => ==+ M- +)
Mos<Xh =M= 4> ==+ M|+~
MsE<++lMl+—>=<'—+lMl-—>=<——IMI+—>=

FCoHIMI+ 45 = ==~ M~ +5>=— (4 — M|+ +)

S A IM =ty =~ (h— M- = (2.23)




—

6 JOURNAL DE PHYSIQUE Nel Nel
Substituting expression (2 ,"’1) for M and calculating the appropriate matrix elements we .obtain the relat@ons The t
between the invariant c.m.s. amplitudes g, ..., e and the helicity amplitudes M, ..., M. With our conventions matrices.
we thus obtain the relatic
M, =%(acos@ +b—c+d+iesinb)
M2=-:1z(acos9——b+c+d+iesin0) with
M3=%(acosﬂ+b+c—-d+iesin0) (2.24)
' More expl

M, = %(— acos® + b + ¢+ d — iesin )
Ms= —;—(-— asin 6 + ie cos )
Formulas (2.24) can be inverted to give
a= %[(M1 + M, + My — M,)cos 6 — 4 M; sin 0]
1
b'—_—' E(MI.—M2+M3+M4)
1
¢ = 5‘(" M+ My + My + M) (2.25)
1
d= '2‘(M1+M2_M3+M4)
e= - —%[(Ml + M, + My — M,)sin 0 + 4 Mscosf].
For forward scattering, when 8 = 0, total angular momentum conservation implies that e(0) =0
a(0) — b(0) = c(0) + d(0). For helicity amplitudes this obviously implies that M,(0) = Ms(0) = 0.
Obviously, infinitely many different types of nucleon-nucleon scattering amplitudes could be introduced
and indeed a very large number exists in the literature. In addition to those introduced above we wish to consider
two more, namely the transversity amplitudes [21, 22] and exchange amplitudes [24, 25), since both of these are
used by various:experimental groups.
The exchange amplitudes are useful since in the high energy limit they correspond to the exchange of definite
quantum numbers (Regge poles) in the ¢ channel (the amplitudes Ny, Ny, N, correspond to natural parity

exchange, Uy and U, to unnatural parity, the subscript denotes the amount of t-channel helicity flip). The
exchange amplitudes are related to the s-channel helicity amplitudes and the a, ..., e amplitudes by the relations

N, =%(M1 + M) =%(acos(9 + b + iesin )
Ny = M; =%(-—asin0+iecos€)
1 1 .
szi(M4»M2)=§(—acos6+b— ie sin 0)
1 1
Uy =5(M; = My) = 5(= ¢ + d)
1 1
U2=§(M4+M2)='2'(C+d)»

This can be inverted to give

a= (N, — Ny)cos —2N,;sinf
b=Ny+N,

¢c= U, - U

d= U, + Uy

e= — i[(Ng— N,)sin6 + 2N, cos 0] .
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The transversity amplitudes T4ap Were introduced by Kotanski [21, 22] in order to diagonalize crossing

matrices. For nucleon-nucleon scattering they are related to the Jacob and Wick helicity amplitudes M. ., by
the relation

Tcdab = .’b’Z’d’ (-— 1)b+d+1 Uct’ Ud*:l' Me’d’a’b' Ua’a Ub’b (228)
with
U=\/-1—5(1_ ;) (2.29)
!

More explicitly, the five independent transversity amplitudes are given by

1
Tl = T++++ =§(M1 + MZ +M3 - M4 ’“4iM5) =(a +€)6Xp(i0)

T,=T___._ =%(M1 + M, + M, - M, +4iM;) = (a — e) exp(— i)

Ty=T,_,_ =%(M1 ~ M, + My + M) =b , (2.30)
T4..T++__=%(——M1—M2+M3—M4) =-—d
T55T+__+=%(M1—M2—M3—M4) =-¢

Formulas (2. 30) are in full agreement with those used in the Argonne National Laboratory (e.g. [26)).

3. Experimental quantities in the centre-of-mass system. — We shall introduce a four-subscript notation
for all experimental quantities. The first and second subscript refer to the final state polarization of the scattered
and recoil particle, respectively. The third and fourth subscript specify the initial polarization of the beam and

A.1. The unpolarized differential Cross section

o = 15000 =%TrMM+.

TABLE II {

Experimental quantities in the scattering of spin % particles
Unpolarized Polarized Unpolarized Polarized
beam beam beam beam
Measured Unpolarized Unpolarized Polarized Polarized
Quantity target target target target
A B c D
Differential cross-
section 1 Iy000 Aooio Agoor Aooik
Polarization of
scattered particles 2 P00 D0 Kook M you
Polarization of re-
coil particles 3 Pyu00 Koo Dy gor Nogi
- Correlation of po-
larizations 4 Ch00 Coraio Cpaox Coair




8 JOURNAL DE PHYSIQUE Ne1l

A.2. Polarization of scattered particle

UPpOOO = %Tro’lpMM+ .

A 3. Polarization of recoil patticle

Tro'zq MM+ .

1
UPOqoo = 4

B.1. Asymmetry in cross section due to polarized beam
1 +
G.AOOiO = ZTr MO'”M .

C.1. Asymmetry in cross section due to polarized target

1
O-AOOOk = ‘ZTr MUZk M+ '

A .4. Polarization correlation for initially unpolarized particles

oC

1
0= ZTro'lpaquMJ' .

pq0

B.2. Depolarization tensor for polarized beam

1
4

aDpOi(): TralpMO'“M"' .

B.3. Polarization transfer from beam to recoil particle

Tr oy, Moy, M™ .

1
UKOqio =3

' C.2. Polarization transfer from target to scattered particle

1 .
GKpOOk = ZTr alp MO-‘Zk M+

C.3. Depolarization tensor for polarized target

aDquk = %Tr 02 MJZk M7

D.1. Asymmetry tensor for polarized beam and target

1
GAOOik = ZTr Mdli 62]( M+

B.4. Contribution to polarization correlation from polarized beam
1 +

GCpin =ZTI'01_,,0'24M0'“M .

C.4. Contribution to polarization correlation from polarized target

1
U'Cpqu = ZTr alp qu Mo'zk M+

D.2. Contribution to the polarization of scattered particle from beam and target polarization

1
O-MpOik = ZTralp MO'“ Tok M+
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D.3. Contribution to recoil particle polarization from beam and target polarization
1
JNOqik = ZTraquO']io'sz+ .
D.4. Contribution to polarization correlation from polarized beam and target

1
_ +
O'Cpqik = ZTrolp Gy Moy ay M .

For an arbitrary reaction of the type % %—-» % + -21- all 256 experiments could provide independent

information. However, if parity conservation, the generalized Pauli principle and time reversal invariance
are assumed, the number of independent experiments is greatly reduced.

Under space reflection vectors 1 and m change their signs, whereas n is conserved. The parity conservation
thus implies that only experiments with an even number of / and m labels are non-zero.

The generalized Pauli principle (including isospin invariance for np scattering) requires an equality of

two experiments related by interchanging beam with target and scattered with recoil particle states and momenta.
It gives for a general pure experiment

quik = (_ 1)[”+["'] X, ki (3 1)

4p)

where [/] and [m] are numbers of labels / and m, respectively, among p, g, i and k.
Parity conservation combined with the relation (3.1) gives

Kpait = Xypi - (3.2

The effect of time-reversal may be expressed by changing the signs of both momenta k; and k; as well as

the signs of 6, and g, and by interchanging the initial and final states and momenta. Therefore the basic vectors
are transformed as

- —~1, m-m, n— —n, (3.3)

The time reversal invariance results in the relation

Xpair = (= DM X5, . ‘ (3.4)

A very helpful method of demonstrating relations between different experimental quantities makes use

of invariance under reflection in the scattering plane (the so called Bohr’s rule [27]). For the nucleon-nucleon
scattering matrix this invariance implies the identity

O1n Oz Moy, 05, = M (3.5

which can be verified directly using formula (2. 1).
Let us discuss pure experiments in the c.m.s.

(0) The differential cross-section ¢ = Io000 18 obviously a scalar with respect to all the discrete symmetries
considered.

(1) One-component tensors (axial vectors) Ppooo0, Pogoos Aooio and Aooor- — Parity conservation implies
that the only non-zero components are P00, Ponoo, Aoono and A gy, The Pauli principle implies P, 500= Pyn00

and Agg,0 = Ao, Finally, time reversal invariance gives : P50, = Agono and Pgy,q0 = Aooon Thus out of
12 different quantities 8 are equal to zero, ‘the remaining 4 are equal to each other.

(2) Two-component tensors C 00 qu.-m KOin,.Kpoo]‘, Dogor and Agpy. — Parity conservation reduces
54 components to 30. The Pauli principle 1rr.1p11¢s. C,,qoo_= Copoos le‘”o = DOI,OV,-, K};ow; = Koo and
Agow = Agows, SO that only 18 components remain. Finally time reversal invariance implies C,.00 = Ao,

Cuoo = Aooue Crmoo = Aoomms Caioo = — Aoomis Dyoro = — Diomo and Kopmp = — Koo, reducing the
number of different experiments to 12.

(3) Three-component tensors Coraios Cpgors M o and Nogix- — Parity reduces the number of components
from 108 to 52. The Pauli principle implies Cpsio = Cypoi and Mgy = Nopwi. Time reversal invariance implies
Crpio = (= DM Mo, Thus we are left with 13 components. These can be further reduced by making use
of the Bohr’s rule (3. 5), providing the relations : C = = Ciinos Commo = Cpyo and Conmo = Cyoand relating

 Cuno to the polarization Como = Pyggo. Finally, 9 components of the three-component tensors remain inde-
. pendent. o :
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(4) Four-component tensor C,y,. — Parity conservation reduces the number of non-zero components
from 81 to 41. The Pauli principle provides the relation C,5 = Cgp and time reversal invariance implies
Cpr = (— 1™ Cy,,,. We are thus left with 17 components. Using the Bohr’s ru}e (3.3) we can reduce some
components to components of lower-order tensors and also find two new relations among the components

of C,uu. These relations are :
Cnmm = L, Cnlnl = DOmOm H Cnmnm = DOlOl k!
Cnlln = Komma » Cnmmn = KOHO’ Cllnn = - C'mmOO s (3 6)
Cmmnn = - CllOO > Cnmln = KOlmO s lenn = CImOO .
Cmnln == DlOmO ’
and
Commm = Cun » Comm = — Cupm - (3.7

Using the formula (2.1) directly we can find

Oom M6y = ~ 01y Moy + 04,y Moy, + 02 Moy, (3.9)

— oy Mo, 04, = 0y Moy — ioy M6y, 65, — 03 Mo, .
and

- iO'zm Mo'ln Oy = — 0y MO']_[ + iauaz,,MO'lm + (227 MGZI .

By multiplying each of the equalities (3.8) by o, from the left and by ¢, M * from the right, we find three
more linear relations amongst components of C,,, and lower order tensors. These can be written e.g. as :

Clmlm = leml =~1+ DnOnO + Cllll
Cimm = Coumu = 1- Aoom — Cu ’ (3-9)
Cimmi = Cotn = — 1 + Koo + Cpyy -

Thus only two components of C
be Cyyy; and Cyp.

Finally, we are left with 25 linearly independent quantities. Let us now express all non-zero experimental
quantities in terms of the scattering amplitudes figuring in (2.1). The results are summarized in table II1, where
122 non-zero c.m.s. experimental quantities are given explicitly. The remaining six components of C, ;. are given
in formula (3.9).

Bilinear combinations of the amplitudes g, b, ¢, d and e expressed in terms of c.m.s. experimental quantities
are given in table IV,

The only other independent experimental quantities are contained in the total cross-section. Indeed the
total cross-section can be written as [28, 29] '

¥

pqix CarTy new (linearly independent) information and we choose them to

pqi

Otor = Opror + O14ot(Pp Pp) + 05,,(Pp k) (Py k) (3.10)

where Py and Py are the beam and target polarizations and k is a unit vector in the direction of the beam. The
terms 0o, 014y and 05, can be obtained by measuring the total cross-section for appropriately polarized
initial nucleons. They are related to the amplitudes via the optical theorem

Tow = ZEIm[a(0) + b(0)]

2n
Tuw=  ZEm[(0) + dO)] G.11)
T = = L2 1m d(0)

where k is tk_le‘wave number. The notation o, and a5, should not be taken literally. Indeed these cross-sections
can be positive, zero or negative and only o,,, and g ,,, are positive definite.
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TABLE 111

FORMALISM OF NUCLEON-NUCLEON ELASTIC SCATTERING EXPERIMENTS

Centre-of-mass experimental quantities in terms of scattering amplitudes

6 = Iyooo

0Cnn00

O-DnOnO =

0K oo =

oCyy

oP =
= acnnnO = aCnnOn = aMnOnn = aNOnmu
Clm =
0Cruo =
O-DIOmO =
0Cu0 =

oK otmo =

0Cno =

Clmoo

O-l)mOmo =

aCmnlO

0D,g0 =

JCIan =

aKOmmO

aCumlO -
Koo =
aCnlmO -
Crmoo =
0ClmnO =
7Cuoo =

O'le no =

acnnnn

aCmmmm

It

FUaP + 10+ (e 4 ap
sUal = 16p = P 4 ap
P+ 1bp —cp = ap
UGl =157+ (cp - |ap

AP +15P + [ + [ap

P00 = 0Pgu00 = 0Apon = 6400, =

0Cym = ~ o Comi = — 0 Coinr =
aclmmm = Gcmlmm = - acmmlm = - Ucmmml
aCman = aCnlOl = GCannx =
UMIOIn = GMmOnxn = CJ-‘ZVOInI = aNOmnm
0Doiom = — D00 = — 0Dope; =
= C’-Cnlnm = o-clnmn = - aCmnln = = O-Cnmnl
CTCnmmO = aCanl = acmnOm
= UMlOnl = OMmOnm = UNOlln = aNOmmn
oKioom = — 0K oor = Komo =
= aCnlmn = aCInnm = - Ucmnnl = O-Cnnlln
= 0Chmno = 0Cpq, = — 0Comon =
=M,y = — oM\ omm = Noyy = — Nowmm
= 0Cpoo = — GAgom = — 0Aoom =
- Ucnnml = - acnnlm = Ucmlnn = aclmnn
¢T'DOmOm = aCnlnl = aClnln
= aCanl = - aMlOmn = - aNOlnm
GDOIOI = acnmnm = acmnmn
acnlOm = - 6Mm01n = = UNOmnl
= aKmOOm=UCn11n = aClnnl
acmnOl - = UMIOnm = - JNOlmn
aKlOOl = acmnnm = acnmmn
0Cinom = — oMo = — N omin
0Aoomm = — 6Cpyy = ~ 0Cliun
aleOn = - aMnOlm = - aNOnml
UAOOII - Gcmmnn = - Ucnnmm
aClmOn - = aMnOml = - 0'N-Onlm

+lel?}
+lel?}
+lel?}
+lel?}

—lel?}

= Rea*e

=Ima*e

= Reb*e

= Imb* ¢

= Rec*e

=Imc*e

= — Red*e

=Imd*e

Re (a* b + ¢* )
Im (a* b + c* q)
= Re(a*b - c* q)
= —~ Im(a*b — c*4d)
Re(a*c + b* d)
= Im(a*c + b* d)
Re (a* ¢ — b* )
= — Im(a* c — b* d)
Re (a* d + b* ¢)
Im (a* d + b* ¢)
Re (a* d — b* ()
= —Im(a*d - b* )

]

I
|

]
!




12 JOURNAL DE PHYSIQUE Ne1

TaBLE IV i
Bilinear combinations of a, b, ¢, d, e in terms of the c.m.s. experimental quantities

la|? =0/2{ — 1+ Dyono + Komo + Cuoo + 2 Cun'}
b =0¢2{ 14 Duono — Komo — Cumoo }
le?=02{ 1— Duou + Komo = Cumoo }
|d? =0/2{ 1 — Dyono —~ Koo + Cumoo ¥
le? = o 1—Cu}
@b = 6/2 { Duomo + Dioio + {Crmo ~ Cimo) }
a* ¢ = 0/2 { Kommo + Kono + i(Cpmio — Coimo) }
a* d = 6/2 { Cymoo — Cuoo — {Crmmo + Cono) }
a*e=0{P+ iCym}
b* ¢ = 6/2 { Cumoo + Cuoo + {Comino — Cimno) }
b*d = 0/2 { Kommo — Koo + {Cumo + Como) }
b* e = 6 { Cpao + iDiomo }
¢* d = /2 { Duomo — Dioto + {Crumo + Comio) }
* e =0{Cuo + Komo}
d*e =0 { — Cupo + iCimoo }

It

1l

In terms of helicity amplitudes we have

Gow = ST [M,(0) + Mz0)]
01t = %—z—tlm M,(0) (3.12)
O = = S m [M,(0) + M3(0) ~ M)

The quantities 6o, 111204 03100 A€ directly related to the singlet and triplet total cross-sections by

1 1 1

Ootot = Zo's + Zar,o + io'z,ﬂ-l
1

Oltot = ?4'(0'1,0 - o-s) (313)
1

0ot = '2‘(Uz,+1 - 0':,0)

(with o, = 6,,+1)-

In table 111 we have expressed 25 linearly independent experimental quantities in terms of 9 real parameters
the absolute values and relative phases of the amplitudes a, b, ¢, d and e. Obviously 16 independent nonlinea
relations between the experimental quantities can be found, making use of trivial relations between comple
numbers. If for a moment we put x, = @, X; = b, X3 = ¢, X4 = d and x; = e, we can write down eviden
identities between the amplitudes

o | x; 20y x7) ‘
(x; x1) = —-————-——(x1 e (3.14)

fori=2,3,4,5/j=1234, 5andj # I
Regarded as equalities between the quadratic terms of the type (x; xJ), (3. 14) represents an example of a fu
set of independent relations. Indeed, from (3.14) all other relations follow, such as

(x, xF) ey xf) = | x; [2(x; x¥)
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or [30]
e x¥) (O 3 ~ (e xDT + e x¥) [ x¥) — (x; x§)] 3 16
+ 00 x8) [ x}) — (x;x9] =0 (3.16)
and [31]
e x5 Gy ) Qo xF) = [, 2 | x| | %, 2 (.17

foralli,jk,1=1,23,4,5.

The relations between observables can be written directly substituting into (3.15), (3.16) or (3.17) from
table I'V. In a similar way using table V we can obtain relations between laboratory quantities or even between
the c.m.s. and laboratory experiments. Many such relations have been discussed in the literature [30, 31, 32] and
we shall not dwell upon them here.

In a similar way we can find inequalities involving the experimental quantities. E.g. from

0<latel

we get
4 , PI < 1 + DnOnO + KOnnO + CnnOO
and
0<[ctdf
implies

| Dmomo ~ Dioto | § 1 — Dyguo -

Further relations can be obtained analogously.

4. Experimental quantities in the laboratory system. — In any experiment only an angular distribution is
measurable. In this section we will discuss the formula describing the angular distribution of correlated scattering
for the case when both initial nucleons are polarized. This is the most general formula for elastic nucleon-nucleon
scattering. It contains all possible experimental quantities and can be specialized to each case of interest by
setting various initial or final polarizations equal to zero or choosing them in certain directions.

We introduce the symbols I; and P,

L=gTeMMt, 18 =Lmeo,ny @.1)

o] —

(=12

for the cross-section and polarization in the scattering, on analyzer 1 for the scattered and 2 for the recoil particle

with scattering matrices M, and M, and unit vectors n 1 and n, in the directions of the normals to the first and

second analyzing planes, respectively (we assume that the analyzing scatterings are performed on spinless

nuclei). If the ith analyzer is absent, then we put £, = 0 and M i equal to the identity matrix which implies I, = 1.
The general cross-section of correlated scattering is defined as

EPBPT(Pls ﬁz) =TrM, M, pM; M}, 4.2)

where the letters Py and Prindicate the initial beam and target polarizationsand p is the nucleon-nucleon density
matrix after the first, (i.e. studied) scattering. The dimension of (4.1) is the first second or third power of the
cross-section if both P; and P, are zero, only one of them has non-zero value or both are different from ZEro,
respectively.

Expanding the density matrix p in terms of the basic tensors, we obtain the general formula [32]

Zrar(P P) =T I, 0 {1 + Agoio Py + Agor Pry + Aoou Py Pri] +
+ Pl[PpOOO + Py Dpoio + Pry Koo + Pp; Pry M o4l 1y,
+ PZ[POqOO + Py; Kogio + Pry Dogo + Py Py Nogil 12,
+ P ﬁ2[cpq00 + Py; Cppio + Pry, Cppor + Py; Pry Cogirl M1pnag } . (4.3)

Summation is understood throughout over repeated labels p, g, i and k. In practice the formula is useful in a
treatment of scattering events by means of the maximum likelihood method. The angular distribution usually
measured in an experiment is described by the ratio

2 papr(0, 0)/Z00(0, 0)




14 JOURNAL DE PHYSIQUE Ne 1

iff, = P, = 0 (e for the experiments B.1,C.1andD.1 of table IT) and by
ZPBPT(ﬁlﬁ 'P'2)/Tl 72 ZPBPT(OJ 0)

in other cases. The differential cross-section (A1 of table IT) is an exception since in this experiment an absolute

measurement is necessary. ‘ _ '
Formula (4.3) is valid in any frame of reference, but we shall mainly useitin the laboratory one (i.e. with the

stationary target), where the labelsp, ¢, i and k will be replaced by a, b, cand d.
When discussing experiments in the laboratory system (1.s.) we shalluse

kK and k" 4.4

i.e. unit vectors in the direction of the initial, scattered and recoil particle momenta in the l.s. (k = k;). Further
we use the transverse vectors

s=nxk, §=nxk, §=nxk’, 4.5)

wherenis defined in (2.2).
In pure laboratory system experiments initial polarizations are specified to be along the directionsk, s orm,
the polarization of scattered particles is measured in the directions k', s’ or n and that of the recoil particles
in the directions k", 8" or n,
Note that in the presence of a magnetic field the spins of the scattered or recoil particles can be rotated
before reaching the analysers (see comment at the end of this section).
Let us now consider individual cases of interest, making use of properties of experimental quantities, which
will be established in section 6.

A. Unpolarized beam, unpolarized target : Py = Py = 0.
A.1. Final polarizations not analysed : Py = P, = 0,1, = I, = L.
Z00(0,0) = 5. 4.6)

A.2. Polarization of scattered p:;%ticles analysed : P, = 0,1, = 1.

Zoo(Py, 0) = I o(1 + P, Pny,). (4.7

A.3. Polarization of recoil particles analysed Bi=01 =1
Z00(0, Py) = L a1 + P, Pny,) . (4.8)

A.4. Both final polarizations analysed.

200(131’}32)=I~1720(1+[ﬁin1n+ﬁznzn]1’+

+ P 3 Pa[Crioo M1n Man + Cygron Mg Mo + Cyiroo Pag Hawr + Cisr00 M Mo + Ciwroo Mawe naie]) 4.9)
B. Polarized beam, unpolarized target : Py # 0, Py = 0.
B.1. Final polarizations not analysed :ﬁl =P =0T =1=1
Zpgo(0,0) = o(1 + PPg,) . 4.10)
B.2. Pularization of scattered particles analysed : P, = 0,1, = 1.
Zpeo(Pr, 0) = Iy 0 {1 + PPy, + Pi[Pny, + Dyguo Poy iy +
+ (Dyoso M5 + Dyoso Mx) Pas + (Dyoro 1g + Dioro Mawe) Prid } - (4.11)
B. 3. Polarization of recoil particles analysed : B, = 0,1, = 1.
Zpao(0, Py) = Lo {1 + PPy, + Py[Pny, + Kopo Pyyan +
+ (Kogrso Pagn + Kowrso Mawr) Pos + (Kogwo Magr + Koo Bowr) Pri) - (412

B. 4. Both final polarizations analysed.

The expression for Zp_o(P;, P,) can be obtained from (4.3) b i =
w0l L1 .3) by putting Py = 0. Thus only P, D .0, Kope
Cpoo and C ;.o appear in the formula. . Y 0e02 00
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C. Unpolarized beam, polarized target : Py = 0, P; # 0.

C.1. Final polarizations not analysed : £, = P, = 0,1 =1, = 1.

Zop,(0,0) = o(1 + PP;,). 4.13)
C.2. Polarization of scattered particles analysed : £, = 0, I =1

ZOPT(ﬁb O=1Ia {1+ PP, + ﬁ1[P"1n + Kuoon Pro 1y, +
+ (Kyoos 11y + Kioos i) Pry + (Kyoor My + Kyoox ) Pry) ). (4.14)

C.3. Polarization of recoil particles analysed B =07 =1.

Zop (0, P)) =T, 0 {1+ PPy, + By[Pn,, + Donon Pry npy +
+ (Dogros oy + Dopengg Ngpr) Prg + (Dosrox Nagr + Dyror o) Pry] }- (4.15)

C.4. Both final polarizationsN analysed.
The expression for X, (P,, B,) is obtained from (4.3) by putting Py = 0. It involves only 2, K,o64, Dosoas
Casoo and C,yq,. . Lo
D. Polarized beam and target Py # 0, Pp # 0

~ ~

D.1. Final polarizations not analysed : B, = B, = 0, =1, =1.

ZPBPT(Oa O) = U[l + P(PBn + PTn) + AOOnn PBn PTn +
+ Aooss Pps Prs + Agou(Pp, Pry + Py Py + Agou Py Pr]. (4.16)

D.2. Polarization of scattered particles analysed : P, = 0, . » = 0.

Zpyp.( Py, 0)is expressed in terms of P, Aooct> Dageos Kaoogand M,,,,.

D.3. Polarization of recoil particles analysed : P, = 0,1, = 1.

Zpap(0, Py)is expressed in terms of P, Aooets Dopoas Kopeo and Ny,

D.4. Both final polarizations analysed.

In this case all terms in (4.3) survive and the general formula, while straightforward, is quite cumbersome.
We shall not spell it out in its generality, but only consider some special cases of interest (specifying the directions

of the polarizations). We concentrate on experiments yielding interesting components of the four-component
tensor.

() Py = Pys,Pr = Pys, P, = Byn, = Piys' + Pk P, = Byn, = P, 8" + Py k" [only the pola-
rization components in the first scattering plane are analysed, i.e. n, (n,) is a combination of s’ andk'(s” and k")].

Zpor(P1, Py) = T, Lio{1+ Aooss Ps Pr +
+ Pi[Py(Dy 40 Ris + Dyoso Myw) + Pr(Ky o0, yy + Kioos Pix)]
+ P[P, B(Koss0 ag + Kogrgg Mgr) + P T(Dogn0s Magr + Doyrgs Hgge)]
+ P P ACssr00 N1y Magr + Cyrroo Mg opr + Crsroo Byp Mg + Cirroo Mag Nyper
+ Py Pr(Cygigs By Hogr + Corrss By Ny + Chogrgs Nyp Mogr + Croirss Byp Ngyn)] } . (4.17)

(i) Py = Pys, Py = Prk, Py = Pin, =P s + Pk, P, = Pimy =P8 + Py X" (ny and n,
are again in the first scattermg plane).

Zpape(Py, Py) = I, Lo{l+ Aoose Py P +
' + Pi[Py(Dy 50 Nys + Diooso Mix) + PrKyoox May + Kook 11x)]
+ Py[PyKoyso Nasw + Kogrso Nagr) + Pr(Dogngy Hagn + Doy g noyr)]
+ P, P,[Cysn0 Rag Rogr + Copngo Ny Nopr + Chgnog Py Mg+ Chngg Ry Rgpe
+ Py Pr(Cognge Mg Ny + Cyprg My N + Ciorsie Ry Magr + Choprge By )] 1. (4.18)
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In all the above formulas it is sometimes useful to express the vector components in terms of the azimuthal
angles @, and @, between the normal to the scattering plane and the two normals to the analysing planes. These

satisfy
cos @y = (n,m), sind, = (@n x k)= — (@, S) 4.19)
cos®, = (m,my), sind,=@mn,x k) =—(nys").

An important fact concerning all the above formulas must be kept in mind. In the absence of a magne?tic
field the scalar products n, and n,,. are zero, since the vectors k' and k” lie in the first and second analysing
planes respectively. Thus, all components of polarization tensors involving k' or k” subscripts actually vanish
from the measured distributions. In order to observe these components it is necessary to make use of magnetic
fields in front of the analysers, rotating the polarizations. In particular, a magnetic field between the target and
the analyser 1 (2) along the direction s(s”) will rotate the polarization of the scattered (recoil) particle in the
k', n (k”, n) plane. The scalar products n,, and n, (15, and 1y} are then to be understood as cosines of the angles
between the normals n, (n,) and the direction to which the n and &’ (n and k") components of the scattered (recoil)
patticle polarization have been rotated by the magnetic field (after the scattering under consideration).

Laboratory experiments are expressed in table V in terms of amplitudes a, b, ¢, d, e and in table VIin terms
of helicity amplitudes.

5. Relations between laboratory and c.m.s. quantities, — Relativistic formulas for the differential cross-
sections depend on the choice of the kinematic variables, are well known and will not be discussed here. We will
now transform other laboratory experiments into the c.m.s. and express them in terms of combinations of the
pure c.m.s. experimental quantities. Generally speaking, the relations can be written as

Xibea = Xiaht Orop brag €1 G - 5.1

A summation over repeated indices is to be understood. The symbols a r.p a0d by, are components of vectors a
and .b rotated through the relativistic spin rotation angles about the normal to the scattering plane, thus repre-
senting spin directions of the scattered and recoil particles in the c.m.s. if the directions in the 1.s. are a and b.

TasLE V ,

0K oo = — Re a* ¢ sin <ﬁ + — Im ¢* e cos

Laboratory experiments in terms of amplitudes a, b, ¢, d, e.
B.2,
oDuso =  Reg* 0 " 7 . 0
050 = e a* b cos oc+§ + Rec* dcos “=3 — Im b* ¢ sin oc+§
oD = — Rea* bsi 0 * 7 0 0
vok0 = ea* bsin a+—2- + Re ¢* dsin “=3 — Im b* e cos ac+§
0Dyoso = Rea*bsi 4 * d si 0 * 0
0s0 e a* b sin oc+—2- + Re ¢* dsin —3 + Im b* ¢ cos a+§
oD = Reg* ) . 0\ . 0
ok = e a* b cos cx+§ — Rec*dcos ~3 — Im b* ¢ sin a+§
B.3.
0K 0 = — Re a* ¢ cos (ﬁ + g) — Re b* d cos </3 — + Im ¢* e sin </3 +
. 0 :
oKoeo =  Rea* csin <B + 5) — Re b* dsin <ﬁ - + Im ¢* e cos (ﬁ +

=
o
o
*
&,
“.
=]
=
!

+ Reb*dcos (f —

+ Im c¢* e sin

[SS] =~ T B
D DD DD D
\_/\/V\ A~

TN

=

+

N o N DI
e N e e

N—_——

0Kopao = ~ Re a* ¢ cos (ﬁ +

TN
e
+



6Cono = Rec*esin (ﬁ +

N——

—Ima*ccos<ﬁ+ —Imb*dcos<ﬁ~

[STRS YN

SNa—

[SYR- T RS N
N— e
R I Pl

6Cumo = — Re c* e cos </3 + 5 ) — Ima*csin (/3 +
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azimuthal C.2
nes. Thes / 6 8
0Kgo0s = Rea*ccos [a + 7 + Re b* dcos (a - 5) — Im ¢* e sin <oc + 5)
. 6 . 0 0
, - * Z * A * 2z
.19 0K ¢o0k Re a* ¢ sin <a+2>+Reb d sin (oc 2) Im ¢ ecos<a+2)
_ R 0 . 7 0 0
0Kioos = Rea* csin oc+§ + Re b* dsin ~3 + Im c* e cos a+§
1 magnetic 0 9 0
analysin oKvoor = Rea* ccos ( o + -—) — Re b* d cos ( —> — Im c¢* esin (tx + —)
illy vanish 2 ] 2 2
f magnetic C.3.
target an 2] 2] 0
ticle in th 6Dogos = — Rea* beos (f + 7]~ Rec*dcos [ — 5]+ Imb*esin {f + 5)
the angle 0 0 0
ed (recoi 6Dogor =  Rea* bsin </3 + §> — Re c* dsin (ﬁ —2-> + Im b* e cos (ﬁ + 5)
).
/Tin terms 0Doyrgs = — Re a* b sin (/3 + g) ~ Rec*dsin [ ~ —g) —Imb*ecos(f + g)
0 ] 0
6Doiwop = — Rea* b cos | f + 3]+ Re c* d cos -5+ Im p* esin | f + 5
re 4.4
ions of th 0Cyproo = — Rea* dcos (o + f) — Re b* ccos (4 — ) + Im d* e sin (o« + f)
0Cyso0 = — Rea* dsin (« + ) — Re b* csin (o — B) — Im d* e cos (@ + B)
(5. 0Cyir00 = — Rea*dsin (« + ff) + Re b* ¢ sin (@ —p) — Imd*ecos(x + )
6Cio0 = Rea*dcos(a + f) — Re b* ¢ cos (@ — f) — Imd* esin (¢ + )
D.1
oAposs = Rea*dcos 8 + Re b* ¢ — Im d* e sin 0
0Agosk = 0Agos = — Rea* dsin @ — Im d* e cos 0
Ao = — Rea*dcos + Reb* ¢ + Imd* esin 0
B.4,
0Cyso = — Re d* ecos (« + ) — Im a* dsin (@ + B) — Im &* ¢ sin (¢ — B)
\ 0Cpsmo = — Red* esin (@ + B) + Im a* dcos (@ + f) + Im b* ccos (o — )
5 6Cspmo = — Red* esin (« + ) + Im a* d cos (@ + B) — Im b* ccos (x — )
/ 0Cexrao = Red*ecos(x + f) + Im a* dsin (o + B) — Im b* ¢ sin (a — f)
0Cyu0 = Reb*ecos (oc + -g—) + Im a* b sin (a + g) — Im ¢* d sin (oc - g)
. 0 0 0
0Cepo = Reb*esin (o + 5] - Im a* b cos +3 + Im ¢* dcos (o ~ 3
. 0 0 6
0Cyo = — Reb*esin [« +t3)+ Ima*bcos (o + 3]+ Im c*dcos [a — 3
0 0 . 0
6Cemo = Reb*ecos[a + 5]+ Ima*bsin {a + 5]+ Im c*dsin |« - 3
| 0 0 . 0
6C,50 = — Re c*ecos [ f + 7]~ Ima*csin [ f + 7 )t Imb*dsin (B — 3
6Crso = — Re ¢* esin ([3 + g) + Im a* ¢ cos <ﬂ + Q) — Im b* dcos (B - )
: )

— Im b* d'sin </3—
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C.4.
Ck’k”On =~ C, s's"n0 > Ck’s"On = Cs’k”nO
Cs’s"On = Ck'k"nO > Cs’k”On = Ck’s"nO
] . 0 * o 0
6Cyn0s = Rec* ecos oc+§ + Im a* ¢ sin oc+§ ~ Imb*dsin (a ~3
. ) " 0 N 0
6Cruos = * Rec* esin +:2- — Im a* ¢ cos cc+2 + Im b* d cos ® =3
. 0 " 0 « 0
06Coyor = — Rec* e sin o+ 3 + Im a* ¢ cos o« +y + Im 5* d cos * =3
0 0 " 7o 0
0Cor = Rec*ecos o+ + Im a* ¢ sin «+5 + Im 5* d sin *=3
: ) " 6 " g 0
0C.g9s = — Re b* e cos ﬁ+§ — Im a* b sin ﬁ+§ + Im ¢* d sin ﬁ_f
. 0 0 N )
0Cos = — Re b* e sin B+§ + Im a* b cos ﬂ+§ —Imc*dcos(f — 3
. 0 | 0 . 0
6Coor = Reb* esin ﬁ+-2- — Im a* b cos ﬁ+§ —Imc*dcos|f — 3
) « 9 % 7 0
6Cuor = — Reb* ecos- ﬁ+§ — Im a* b sin ﬁ+§ —Imc*dsin (B — 3
D.2,
oM s = — oMo = Re d* ecos 0 + Im a* dsin 0
oMo = — Red*esind + Ima* dcos § + Im b* ¢
oM = — Red*esinf + Ima*dcos® — Im b* ¢
]us'OIzs = Ck'nOk s Mk’Ons = - Cs’noka Ms’Onk = - Ck’nOs s Mk’Onk = Cs’nOs
My = Ck’nkO s Myow = — Cono » Mo = — Cinso » Myow = Cs‘nsO
D.3.
NOnss - NOnkk = M, » ANOnks = MnOsk > NOnsk = MnOks
Nogrs = an”Ok s NOk”ns = - Cns”Ok > NOs”nk = - an”O; » \ Nowire = Cns"Os
NOs”sn = an”kO ’ NOk”sn = = Cns”kO ) N()s"kn = - an"sO » N()k”kn = Cns"sO
D.4 |
(Cs’s"ss + Ck k”s,s) = (I b IZ + I 4 ,2) cos (ﬁ - OC)
U(Cs 'k'ss T Ck’s”ss = (l b |2 + I c 12) sin (ﬁ - a)
0(Covse + Cprg) = - (161>~ | e P)sin (B — o)
o(Cowrsk = Cgrg) = = (161> = | ¢ |*) cos (B ~ a)
C"(C.s’.s‘”ss - Ck’k”ss) = - (l a lz - I e |2) cos ((1 + ﬁ + 0)

G(Cs'k"ss + Ck’s"ss) =
G(Cs’s"sk - Ck'k"sk) =

0(Coprge + Cugg) =

- I"dlzcos(a+ﬁ-0)+2Ima*esin(a+ﬁ+0)

—(laP = leP)sin (@ +8 + 6)

— |dPsin(e + g — 0)=2Ima*ecos (x + f + 6)
(lal*~le)sin(@+ B +6) ~

~ |d*sin(@+ B — 0) + 2Ima* ecos (x + B + 6)

—(al*=1le*)cos(@+ B + 6)

+|dPcos(@+ f—6)+2Ima*esin(x+ B + 6).
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TABLE VI
Laboratory experiments in terms of helicity amplitudes.
A.1.
. .
U=§(|M1 P+ IMy 1P+ | My P+ | M)+ 4| M )
A.2.
0P = — Im[M¥M, + M, + M; — M,)]
B.2.
O-‘DnOnO': RC(MTM3—M§M4)+2IM5 |2
0Dgos0 = — Re [M¥(M; — M, + M3 + M,)]sinf, + Re (M} M; + M§ M) cos 8,
1 .
0Dgoro = Re[MFI(M; — M, + M5 + M,)] cos 8, + 5([ M= | My P + | M52 — | My |*)sin 6,
0Dyoso = —~ Re [MFM, — M, + M3 + M,)] cos 8, — Re (M} My + M} M,)sin 0,
. 1
de’OkO = — Re [M;:(Ml - Mz + M3 + M4)] sin 01 + E(l Ml |2 - |M2 |2 + IM3 I2 - |M4 |2)C0501
B.3,
O-KOnltO = - RC(MT M4 - Mik M3) +2 IMS [2
oKogso = — Re [M¥(— M + M, + M3 + M,)]sin 0, — Re (M} M, + M} M;) cos 6,
1 ,
0Kogo = — Re [M¥(— My + M, + My + M,)]cos 6, + 5(_|M1 PHIM, P+ My P — | M, ") sin 6,
0Koso = Re[M¥(—~ M+ M, + My + M)Jcos0, — Re (M} M, + M¥ M;)sin 6,

, . 1
0Kopo = — Re [ME(— My + M, + M3+ M,)] S1n02—-2-(— | My >+ | My 2+ | M3 |* — | M, |?)cos 8,

C.2

0Kgoos = — Re [M¥(— My + M, + My + M,)]sin 0, + Re(M¥ M, + M} M,) cos 6,

oKyoor =

C.3.

O.DOS"OS =
0Dggugy =
0Dgpnos =
0Dgpuor =

A4.4.

acs’s"OO

7Crso0

JCnnOO =

1 .
Re[M¥(— M, + M, + M3 + M,)] cos 6, +§(_|M1 1>+ M 2+ | M3~ | M, |*) sin 0,

0Kpoos = — Re [M¥— M, + M, + M3y + M,)]cos 8; — Re (M} M, + M} M,)sin 6,

\ 1
Kook = — Re [M¥(— M, + M, + My + M,)] sin 6, +§(" IM P+ [ My P+ | My >~ | My ) cos 8,

— Re[M¥M, — M, + My + M)]sinf, — Re (M{ My + M$ M,)cos 9,

— Re [M¥M,; — M, + My + M,)]cos 8, + %(|M1 P = | My + [ Ms|? ~ | M, [?)sin,
Re [M¥M, — M, + My + M,)]cos 6, — Re (M} My + M$ M,)sin 6,

— Re[M¥M, — M, + My + M,)]sin 0, — %(|M1 P = My > + | My > — | M, [*)cos 8,

Re (M¥ M, — My M)+ 2| M; |
= =12 M, |*+ | M, [* — | M3 > ~ | My |*) sin 8, sin 6,
— Re(M}¥ M, + M¥ M,)cosB, cos 0, + Re [M¥(M, + My — My + M,)] sin (6, — 0,)
= — 12| M *+ | M, > — | M3 [* — | M, |*) cos 6, sin 6,
+ Re (Mf M, + M3 M,)sin 0, cos 0, + Re [M¥(M, + M, — My + M,)] cos (6, — 6,)




20

oCsro0

6Crimo0

D.1.

B.4,

C.4

D.2.

D.4

JOURNAL DE PHYSIQUE

12 My 2 + | My 2 — | M3 |* — | M, [?) sin 6 cos 0,

— Re(M* M, + M} M,)cos 0, sin 6, + Re[M¥(M; + M, — M3 + M,)] cos (8, — 6,)

= YA M P+ M- M [ — | M, ) cos 0, cos 0,

+ Re (M* M, + M¥ M,)sin 6, sin 0, — Re [M¥(My + M, — M + M,)] sin (6, — 0,)

aAOOss = Re (Mik MZ + Mik M4)
0Aoosk = 0Agors = Re [MF(M, + M, — M5 + M,)]
oAoo = — 1/2(| M, P+ | M P = M5 — | M, %)

0Cyyno = Im [M¥(M; + M, — M3 + M) cos (6, — 05)

+ (AJ;_’< M3 - Mik M4)C0361 Sin92 + (Mik M4_ - M;‘ M3) Sin@l cos 02]
0Cygrmp = Im[— M¥M, + My — M3 + M,)sin (6; — 0,)

~ (M¥* My — M} M) sin 0, sin0, + (M§F M, — M3 M;)cos 6, cos 0,]
0Cyprno = Im [~ MM, + M, — M5 + M,)sin (8, — 6,)

— (M} My — M¥ M,)cos 0, cos 0, + (M¥ M, — M3} M;)sin 0, sin 0,]
0Cpoo = Im[— MM, + M, — M3 + M,) cos (8; — 05)

+ (M¥ My — M¥ M,)sinf, cos 8, + (M} M, — M} M3)cos 0, sin 6,]
ch’nso = Im [_ MS*(MI - M2 + M3 + M4)C0501 - (Mik M4 + Mik M3) Sin 01]
O'Ckl”so = Im[ M;‘(Ml - Mz + M3 + M4) Sin 01 - (Mik M4 + Mik M3) CcoS 01]
O'Cslnko = Im["‘ M?(Ml - M2 + M3 + M4)Sin 01 hd (1‘41’= M2 - M;‘ M4)COS 61]
0Cymo = Im[— M¥M; — M, + My + M,)cos 8y + (M} M, — M} M,)sin 6]

0Co=1Im[ M¥— M, + My, + M3 + M,)cos 0, — (M} M3 + M3 M,) sin 6,]
0Chprso =Im [ MX— M, + My + My + M,)sin 8, + (M} My + M¥ M,) cos 0,)]
0Cogno = Im [— M¥(— M, + M, + My + M,)sin 0, — (M} M, + M¥ M,) cos 6,]
0Cyro =Im [ M¥— M, + M, + M3 + M,)cos 0, — (M} M, + M¥ M,) sin 6,]

0Cy0s = Im[— M¥(— My + My, + M3 + M) cos 0y — (M¥ M3 + M3 M,)sin 0,]
6Cnos = Im [ M¥—= M, + M, + My + M) sin 0, — (M¥ M, + M} M,) cos 0,]
0Comor = Im [— M¥(— M, + My + M3 + M) sin 6, + (M¥ M, + M¥ M,) cos 6]
0Cgnor = Im [— M¥(— M, + M, + My + M) cos0, — (MF M, + M} M,)sin 6]

0Cpos = Im [ M¥M; — M, + My + M) cos 0, — (M¥ M, + M} M;)sin 6,]
0Curos = Im [ M¥M; — My, + My + M) sin 0, + (M} M, + M} M,)cos 6,]
0Cgon = Im [— M¥(M; — M, + My + M)sin 0, + (M} M, — M} M,) cos 0,]
0Cyoor = Im [ M¥M; — My + My + M,)cos 0, + (M¥ M, — M¥ M,)sin 6,]

oM o5 = — oMo = — Im [M¥(M| + M, — M; 4+ M,)]
O.MnOks = Im (Mi“ M4 - M;.k M3)
oM,y = — Im (M} M3 — M} M,)

0(Cygrgs + Cpirs) = — 5 (| My — My |* + | M3 + My |*)cos (0, + 6,)

[N ST

0(Coirs — Cgrs) = =~ 5 (| My — My 1> + | Ms + M, |?)sin (6, + 6,)
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0(Cosrst + Cpwa) = Re [(MF — M3) (M, + M,)] sin (8 + 0,)
0(Cypge — Crgrg) = Re [(M} ~ M¥) (M3 + M,)] cos (8, + 0,)
1
0(Cyyrss — Cpprgs) = [4 | Mg |* ~ 5(' M+ M, + | M, - M, lz)]cos 6, —0y)
— 2Re MM, + M, + M, — M,)sin (0, — 6,)
1 . .
U(Cs’k"ss + Ck's“ss) = [4 ' MS IZ - '2-(| Ml + MZ ,2 + IMB - M4 ,2)]811’1 (02 - 01)

+2Re M¥(M, + M, + My — M,)cos (8, — 8,)
0(Cysrge — Crprg) = — [4]M; > — Re (MF + M¥) (M, - My)]sin (6, — 6,)
—2Re M¥}M, + M, + M, ~ M) cos (9, — 6))
0(Corrsy + Chgrg) = [4]M;* ~ Re (M¥ + M$) (M, ~ M,)] cos (6, — 6,)
- 2RCM;'€(M1 + M2 + M3 - M4) Sin (02 - 01)

Q=0-20,=2qa ie o=

(5.2
Q=-n4+0420,=—n+2p je f=

for the scattered and recoil particle respectively, where 8 is the c.m.s. scattering angle, and 6, and 0, are the l.s.

scattering and recoil angles. The nonrelativistic case corresponds to

7
a=90, f=z. (5.3
2
Note that all angles 6, 6,, 02, «, f and Q; are not negative whereas Q, <0.
All vectors and angles involved are illustrated on figure 1. We easily find the relations
kz, = lcosa + msin o , kg, = — lcos § — msin g
. . (5.4
Sg, = — Isina + mcosa, Sg, = Isinf — mcos
. ¥ '3 e
2 m ls l'(f
\
Ry I
\. ol | -
’ { ? ki,
Z
ol /,P
-~ 3#52 FiG. 1. — Nucleon-nucleon scattering kinematics in the centre-

of-mass and laboratory systems. The angles indicated are : the
c.m.s. scattering angle 6, the Ls. scattering and recoil angles 6,

—»k=k and 8,. The relativistic rotation angles Q 1=2aand Q,=—7n+2 4
for the scattered and recoil particles (in the nonrelativistic limit
we have o = 0, f = n/2). Unit vectors in the following directions
are shown : the initial and final c.m.s. momentum k; and k,, the
directions 1 ~ k; + k,, m ~ k, — k;, the initial scattered and
recoil particle 1s. momenta k = ki, k' and K, the directions
s=nxk §=nxk and 8" =n x k", where n~k; x k.
Finally kg, Sq,, kg, and sg, are the above vectors k', &', k" and
s" rotated through the angle 2, (or Q,) for the scattered (recoil)
particle.
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and

0 . 0
k =lcos§—— ms1n-2-

) (5.5)
s=lsm§+mcosz.

Formula (5.1) is written for the four-component tensor. The formulas for lower-order tensors are obtained
by simply putting appropriate indices equal to zero and by omitting the corresponding vector components on
the right hand side.

Each of the indices p, ¢, i and & in (5.1) is equal to' 0, /, m or n [see (2.2)], a [b] is equal to 0, k', s’ or n
[0, k", 5" or n} and each of c and dis equalto 0, k, s or n [ see (4.4) and (4. 5)].

Let us now consider individual cases from table IT and derive relations between c.m.s. and 1.s. experiments
using the results of section 3.

A.2. Polarization of scattered particles analysed : P* = P°™ = P.
B.2. Polarized beam, scattered particles analysed. — The well-known Wolfenstein parameters
DaOcO = DpOlO (lR”, ¢; are

D = D,y (Ls and c.m.s. quantities are equal)

i

0
+ D,omo COS & COS =

. .0 .
R =Dy = — Dy sin a sin 3~ D)oo sin 5

o -+

TN

/;\
+
BRD D o

.0
= Dyomo COS & sin =

, 0
A= DS'OkO = - Dlmo SIn o« CoS ¢ — DlOmO COS 3

2

g g

' : .0 .
R' = Dy = Dy cos a sin 3 + Diomo €OS (cx + ) + D,,,o,,,o_sm o cosg
A =D — D 0, 6 —
—_— k'0k0 — 1010 COS o COS z - 10mQ sin o + §‘ - Dmomo Sln ol SIn 5 .
B.3. Polarized beam, recoil particles analysed. — The transfer Wolfenstein parameters satisfy )

Kowo = KOin bxzq Ci

i

K =Ko (l.§, and c.m.s. quantities are equal)

— Ko €OS B'cosg

R = Kogs0 = Koy sin f'sin 5+ Koimo sin (ﬁ +

Ay = Koo = . Koo sin B cosy + Koimo cos (ﬁ +

+ Kgpmo €08 f sin g

2

NID N D

N N S

— .0
R = Koo = — Koyg o8 fsin 5 — K0 €OS (/3 + = | — Kopmo Sin B cosg

. 6 .
Al = Kopeo = — Ko c0s B cos 5+ Kopmo sin ([3 + g) + Kommo 8in B sin g .
C.2. Polarized target, scattered particles analysed. — We shall use small letters for the analogues of the

Wolfenstein parameters in the case of polarized target and unpolarized beam. We have K0, = K

o . 00k AR, p G
and we eXpress K o0y in terms of K, ' o

ki =K =K, (Ls.and c.m.c. quantities are equal)
_ . .0 .

n = Kgoos = — Koy sin o sin 5~ Koimo Sin <oc + g) + K jmo COS o cosg

' g =Kopor = — K i ’0 4! in &

] 00k ono SIN & COS 5~ Koimo cos {a + 5]~ K ommo c0s a sin 3
: r/ = K ' = K 1 Q 0 5 . 0 i
1 k005 oo €08 &SI 75 + Komo cos {o + 5]+ Kommo sin o cos 3 ‘
' : 0 . | |
& = Koo = Koy cOs cosi — Koymo Sin (oz + g) — Kyumo 8in o sin -g—
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C.3. Polarized target, recoil particles analysed. — We have Doyos = Dy, br,q 4 and we express Dyon
in terms of D010

d=D =D, (s andcm.s. quantities are equal)

I

. .0 . 0
r= Dogyos = Dy sin f sin 5+ D40 sin <ﬂ + =~ D40 cOs B cos 3

)
. 0 0 .0
a = Doy = Dy sin B cos 5+ Dyomo cos (B + 3 )t D,0mo €08 f sin 3
, .8 0 . 6
"= Dogros = — Dygq cos B sin 7~ Dyomo cos | B + 3]~ D, om0 sin c0s 5

0 . . )
¢ = Doy = ~ D4 cos B cos 3 + Do sin (ﬂ + g) + Diiomo sin B sin g

A.4. Polarization correlation Jor initially unpolarized particles. — We have C,,,, = Crg00 g, bg,q 80 that

CnnOO = Cs’s"OO == CIIOO sin o sin ﬁ + CImOO Sin (O{ + .B) - CmmOO cos GCCOSB
(1s. and c.m.s. quantities are equal)

Cunoo = Cigoo = Cpgp OS a sin B — Cipoo cos (o + B) = Cpmoo Sin o cos B

(Ls. and c.m.s. quantities are equal)
Cinoo = Cyprgp = Cugp sin « cos B = Cipoo cos (@ + p) — Cmoo cos a sin 8

(Ls. and c.m.s. quantities are equal)
Cuoo = Cyrgo = — Ciioo €08 & cos § — Cimoo sin (& + ) — Cmoo Sin & sin f

(Is. and c.m.s. quantities are equal).

D.1. Cross section for polarized beam and polarized target [33]. — We have Aooed = Aooix ¢; dy :

., 0 , 6
Aooss = Cygo sin? 7 Cimoo $in 8 + C,00 cos? 7

1 .
Agosk = Aoors = 3 (Cuoo — Comoo) sin 6 —~ Cimoo cos 0

Aosor = Ciyop coszg + Cinoo 8in 0 + C,,,.0, sin? -g .
B.4. Polarized beam, both JSinal polarizations analysed. — We have Cavco = Copip ag, p Dryg i
Cosmo = Cpgcos(a + f) + Chino COS  8in B + C,,0 sin o cos §
Cismo = Cppo sin (a + B) + Chuposin asin f ~ Cimno €OS & COS f§
Corrmo = Cppyo sin (a + B)  — Cpuno cOs a cos B + Cimno Sin o sin B
Ciwmo = — Cypocos (@ + f) — Contno 8in & cos B — C,,,, 5 cos asin B

0 .0 . 0
Como = Cuyo cOs (oc ta |+ Connto €OS « sin 5~ Ciamo SIn @ cos 3

) .0
+ Cppo Sin « sin 3T Ciomo COS & oS =

[

>
N e
D

Cimso = Ciyo sin <°‘ + 5

0 . .
+ Cpuo COS & COS = + Ciumo Sin o si

Comeo = — Cuo sin (O‘ + 2

I ol

n
_ 0 .
Como = Cpocos|a+ x|+ Coamio 8in « cos 3~ Ciumo €08 & sin

I

4
2
6
2
.0 . 0

Cns”so == CnllO cos | f + - CmnlO cos f sin 5 + CnlmO Sln-ﬁ cos 5
. .0 6

— Cpmio 8in Bsin = — Coimo €08 f cos 3
4

2

6

Curso = — Cpyo 8in (ﬂ + 3

0 . .
— Como €08 B cos = — Cmo Sin B sin

Cns”ko = CnllO Sln (ﬁ + 2

NI N NI o

> ~ Cpmo 8in B cos g + Cymo cos B sin 3

an”kO = - CnllO Cos (ﬁ +
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C.4. Polarized target, both final polarizations analysed. — We have C,y0; = Cppox AR,p br,q 4 and express
Cqor in terms of Cppy0.

4 .0 : [

Conos =  Cuo co8 (oc + 5) + C,mo COS a 8in 3~ Cumo SIDL A cOS 7
. . 0 ]

g + Copo SIn a sin = + C,y,0 COS & COS 3

Cynos = Cpg sin (0‘ + 3

0 . . 0
+ Comio €05 0 €08 = + C 0 Sin  sin 3

Cs’nOk = - CnllO sin (O( + 2

. 0 .0
+ Cmio sin o cos = — C,y,0 COS & Sin 3

Cinor = Cpyo COS (“ + 3

. B . 0
— Cpmio €08 f 8in = + C,0 Sin B cos 5

Cns”Os = - ClulO cos <B + 2

D D NI DD )

. .8 0
an”Os == Clnlo sin (ﬂ + - Cmnlo sin ﬁ sm oz — Clan cos ﬁ COS =

2 2 2
0 6 . .
Cioor = Ciyp sin </3 + 5) — Cypuo €08 ff coS 5= Clumo Sin f sin 3
’ 0 . 0 .6
Coior = — Cyyo COS (ﬁ + 5) — Cpyupo sin f8 cos 5 + Como €0s f sin 3
Cosron =" Cung €08 (¢ + B) + Cippg €O 0 Sin B + Cppyyo sin o cos f
Cusion = Cusosin (@ + )+ Cpppo sin asin f — C,;,0 COS & cOS B
Corron = Cyposin (@ + ) — Cippo cos @ cos f + C,y,p Sin o sin B
Cinron = — Cup 08 (@ + B)  — Cppo Sin &0 €08 f — C,,0 COS @ Sin B.
D.2. Polarized beam and target, polarization of scattered particles analysed. — We have

Maoes = Moy ag,, ¢; di
and express M, in terms of C gi0-

1 .
MnOss = - MnOkk, = Clan cos § — 5 (leno + Clmno) sin 0
' . . 2 0 : 2
MnOks = Clan sin 0 + lenO sin 5 - ClmnO cos

ND D

]
, : 2 2
MnOsk = Clan sin § — lenO Cos 5 + ClmnO s

D.3. Polarized beam and target, polarization of recoil particles analysed. — For the experiments N,
see section 6,

D.4. Polarized beam and target, both final polarizations analysed. — For the relations see (6. 30) and (6.31

6. Relations between experimental quantities in the laboratory system. — The number of linearly ind
pendent experiments is the same in any frame of reference. The 25 linearly independent laboratory frame exp
riments can of course be chosen in many ways.

Contrary to the c.m.s., in the Ls. we use three different bases, which together with relativistic spin rotatio
complicates relations between experimental quantities following from parity conservation, the Pauli princip
and time invariance. A relatively simple way to derive them is to use transformation relations between bas
vectors in both systems. The inversion of (5.4)and (5.5) gives

0 . 9 ’ 3 ” 5
= kcosi+ss1n§=kRl cosa — sp, sin & = —~ ki, cos § + Sk, sin f8
‘ o o 6.1
m = —-ksin§+scos§=k,’¢1 sin « + s coso = — R, SID B — s; cos B .

We set them into the equalities derived in section 3 and transform the results into the laboratory system.
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It is easy to see how the Bohr rule can be applied in the laboratory system. It implies that two experimental
quantities are equal up to a sign if one results from the other by replacing the label 0 by n,nby 0, k (k' and
k") by s (s’ and s") and s (s’ and s") by k (k’ and k"). The sign is equal to (— 1)Y20k= i+ M=k pore [ski
and [s]; indicate the number of s-type labels in the initial and final states and similarly for []; and [£];.

The parity conservation — as in the c.m.s, — implies that only experiments with an even number of k,
k', k", s, s and 5" labels are non-zero.

The generalized Pauli principle together with the parity conservation give once more

Xabcd = Xbadv . (62)

Formula (6.2) relates pure laboratory system experiments if @ and b are equal to 0 or n, ¢ and d equal to 0,
k, s or n (always with an even number of k and s labels). A substitution of (6.1) into (3.2) gives after a simple
calculation

Xives = — Xypoge €08 (6, + 6,) + Xpsrae Sin (6 + 0,)

: (6.3)
Xs"bcd = ka”dc sin (01 + 02) - sz”dc Cos (0 + 92) )

whereb = O,nandc,d = 0, k, §, n. Notice that the second relationisa consequence of the first one and the Bohr
rule. Using (3.2) and (6. 1) again, as well as the Bohr rule, we obtain

Xk’k”cd + Xs’s”cd ‘kk’s”cc T Akl
Xk’s"ctl - Xs’k"cd Xk'k"cc + Xs’s"

where (c, d)_ = (0, n), (n, 0), (k, s) or (s, k). In the nonrelativistic case (6. 4) reduces to
“ Kisrea = Xpwoed = Xpporee + Xygree = 0.

Time reversal invariance implies relations of the type (3.4) in the laboratory system only if all labels are
equal to 0 or n. Other combinations of subscripts give more complicated relations amongst pure experiments,
such as :

Xivsw + Xoprp Xivwa — Xy
T B e — tan 91
Xiovko — X Xyvsa + Xopra 6.5
Xak”ck - Xas”cs — _ Xak”as + Xas”ak = tan 0
Xak”cs + Xas"ck Xak”ak - Xas"as 2
witha, b, ¢,d = 0,n,a # cand b # d. Both lines are related by the Pauli principle (6.3).
Another consequence of time reversal invariance is
Xk’bcs sin 01 - Xs’bcs Cos 01 = Xck“sb sin 92 + Xcs"sb Cos 02 (6 6)

Xk’bcs COS 01 + Xs'bcs Sin 01 =’Xck”kb Sin 92 + Xcs”kb cos 02 3

where b, ¢ = 0, nand two further relations which can also be derived from (6. 6) using the Bohr rule. Putting (6. 3)
into (6.6) we get four equalities related two by two by the Pauli principle

Xiewws + Xop Xivk — Xopes
= - = tan 6,
Kok — Xsrops Xives + Xper 6.7
Xak"kd - Xas”sd Xak”sa + an”ka
= - = tan 62 )
Xnk”sd + Xas”kd Xak”ka - Xas"sa
wherea, b, ¢,d = 0,n,a # dand b # c.
Four further relations implied by time reversal invariance are
Xewred + Xogroa = Xgy — X,gg) sin 6, + 0, - (Xeawe + Xoass) cos (0, + 6,)
Xk’s"cd - Xs’k”cd = (Xcdks - Xcdsk) Cos (01 + 02) + (Xcdkk + Xcdss) sin (01 + 02) (6 8)

Xiwrog — Xysrea = (Xeaks + Xoage) sin 0, -6, - (Xear — X a55) COS 0, - 6y)
Xk’s"cd + Xs’k"cd = (Xcdks + Xcdsk) Cos (02 - 01) + (Xcdkk - Xcdss) Sin (62 - 01) s
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where ¢, d = 0, n. Notice, that if ¢ # d than Xy = — Xeass by the Bohr rule and the Pauli principle, which
simplifies the relations (6.8). On the other hand ¢ = dimplies X s = Xcasi:

Let us discuss the individual classes of experiments.

(1) One-component tensors

Prooo = Pouoo = Aogno = Agoon = P 6.9

as in the c.m.s.
(2) Two- component tensors
The Pauli principle (6.2), (6.3) and (6.4) implies

Agoks = Aoo§k= Dyyon = Dyyon0 5 Koon = Komo
Dogroa = — Dyoao 8in (01 + 02) — Dyogo €OS 0, + 6,)
Dogoa = — Dyoao €08 (01 + 82) + Dyggo Sin 6, + 6,)

Kiooa = KOs”dO sin (8; + 60,) — Koguao €08 (8 + 0,)
Kgooa = — Kograo €08 (01 + 02) — Koirao sin (0, + 6,)

ford = s, k and

Cisro0 — Cyoirroo = —tan (0, + 6,). (6.12)
Cirrgo T Cosrao

Time reversal invariance imposes further constraints, namely (3.4), (6.5) and (6.7) giving

CnnbO = AOOnn (613)

Dy 50 + Dyoro _ R’/ + A4 ~ tan 0, '
Dyoxo — Dyoso A" — R
Dogior + Doyros e + ri — tan 6,
Dogros — Dokrox ¥ — @ ‘ (6.14)
K, Kogor -~ 1t + a

w00s T Byook t’ * — tan 6,
Kioox — Kgoos & — 1
Kosko + Korso _ A + R ~ tan 0,

Kogso ~ Koo R — 4{
The relations (6. 8) are simplified as
Cirroo + Cogioo = = (Aoow T Aooss) €08 (61 + 63)
Cusioo = Coxoo = (Aoowr + Aooss) sin (01 + 62)

Ciwoo — Cosroo = 2 Aoois sin (0, — 84) — (Aoork — Aooss) c0s (8, — 0y)
Cisoo + Coxroo = 2 Agoks €08 (02 — 01) + (Aoorx — Aooss) 8in (8, — 6y) .

Thus, we are left with 12 independent quantltles e. g Aoou AOOkk» AOOss, Aoosk> Dnonos three of the fo
quantities Dy o50, Diokos Dyoros Dk‘OsO ; Komo and three of the quantities K ogns0, Koxkos Kosxo and Kogrso-
" (3) Three- ~component tensors. — Parlty conservation 1mp11es that each tensor has at most 13 non-ze
components, Consider first the tensor M,q.. Makmg use of the Bohr rule and (6.2) we find

MnOnn = P ’ Mnokk = - MnOss . (616

The generalized Pauli principle, together with time reversal invariance and the Bohr rule imply [see (6.5
and (6.7)]

Ms’Osn - Mk'Okn _ Ms’Ons - Mk’Onk
Mk‘Osn + Ms'Okn Mk’Ons + Ms'Onk

= tan 0, . 6.1

Thus we are left w1th 9 linearly independent components of the polarization tensor M, in the laborato
frame.
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- The polarization of the recoil particle for both beam and target polarized is related by means of the generaliz-
ed Pauli principle to the polarization of the scattered particle M. Using (6 .2) we get

NOmm = MnOnn = P, NOncd = MnOdc (6 18)

and the inverse relations to (6.3) imply

Nokrmg = = Moy, c0s (8, + 0;) — Mo, sin (8, + 62)
Nogiwa = Myoy sin (0, + 05) — Moy, cos (8, + 6,)
Nowren = — Myo,, cos (8 + 0:) — My, sin (0, + 0,)
Nogren = My, sin (6, + 02) — My, cos (8, + 6,).

(6.19)

The labels ¢ and d in formulas (6.18) and (6.19) are edual to k or s, Thus all 13 non-zero components of Ny,
are expressed in terms of M,

The two polarization correlations tensors are related to each other. The Bohr rule gives

CabOn = - C[n xal[nx b]n0 » (6 . 20)

where a and b run through (&', 5") and (k”, §"), respectively and [n x v] is label corresponding to the direction of
the vector product [n x v] for an arbitrary unit vector v. In more detail (6.20) gives

Ck'k"On = - Cs’s”nO s Ck’s"On = Cs'k”nO

(6.21)

Cs’k"On = Ck’s”nO s Cs’s"On == Ck’k”nO .

Other components of Casio and C,,; are related by the Pauli principle (6. 3).

In turn, the polarization correlation tensors can be related to Mo, and Ny, .. Quite directly the Bohr rule
gives

CnnnO =P ] CancO = M[n X al0[nxcln s Cnch = NO[n xb][nxcln » (6 . 22)

where a, b and ¢ run through (s, k') (s”, k") and (s, k), respectively. The last of equalities (6.22) together with
(6.19) give

Crsiso = — Mgy sin (8, + 05) — Mo, cos (6, + 82)
Cosmo = Mg, sin (0, + 03) + Mg, cos (0, + 6,)

. (6.23)
Carrso = Mgy cos (8; + 6,) — My o sin (6; + 9,)
Cikrko = — My, cos (8, + 0,) + Mo, sin (8; + 6,).
The remaining components of this tensor are mutually related by the Pauli principle (6.4)
Ck’k"nO + Cs’s”nO .
F—————— = tan (0, + 0,) (6.24)
Ck's"nO - Cs’k”nO ( ! 2
and with M, ,, by the time reversal invariance relation (6.8).
Cikno + Cogrmo = (Myors — Miyoy,) sin 8, +0,)
Cusgmo = Corrmp = (M o0 —~ M,,0q0) cos (8, + 6,) (6.25)

Crawmo — Cygno = (M, noks + Mpog0) sin (0, — 8;) — 2 M, g cos (6, — 6,)
Cusmo + Coprmo = (Miyois + M04) cos (02 — 0,) + 2 M,y sin (9, - 0,) .
Thus we have directly or indirectly expressed all 52 noh-zero components of the three-index tensors in
terms of 9 linearly independent components of the tensor M.

(4) Four-component tensor. — Parity conservation implies that only 41 components of C.pes are non-zero,
amely those with an even number of labels 7 : none, two or four. Using the Bohr rule we immediately reduce 25
f these components to components of lower-order tensors. Indeed

Conn =1,

Cavn = = Cluxaitx 100 » Conca = = Aootux ginxa < (6.26)
Cuwen =" Kopixnpuxao>  Copa = D 001 x b10Ln x d] >

Coiver = Dpux gopnx o » Comma = Kinx a00mx a1 -
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In (6.26) a and b run through (¢, k') and (s", k"), respectively and c, d run through & and 5. The remaining 1
components are pairwise related by the Bohr rule :

Ck’k”kk = Cs’s”ss 3 Ck'k"ks = Cs’s”sk
Chrsme = — Corrss » Crrgns = Corrsi (627)
Cs’k”kk = Ck’s”ss 3 Cs’k”ks - Ck’s"sk

Cs’s"kk = Ck’k”ss » Cs’s"ks = - Ck’k”sk .

Thus, we are left with 8 components, e.g. those on the right hand sides of (6.27).
The Pauli principle (6.4) imposes two further constraints, namely

Ck’k"sk + Cs’s"sk . Ck’s"ss - Cs‘k”ss

= - = tan (6, + 0,) . (6.28
Ck's"sk - Cs’k"sk Ck’k”ss + Cs’s"ss ( ! 2)

One more independent relation between the six remaining components can be found using time invariance
Indeed, in the c.m.s. we have Cy,,; = — Cy,, which can be rewritten in the laboratory system using (6. 1) and the
Bohr rule as . '

[(Cs'k”sk - Cs’s”ss) Sin 02 + (Cs's"sk + Cs’k”ss) cos 92] Ccos 61 -
= [(Conrse — Ciogrss) 800 + (Cpgnge + Cipe) cos 0,] sin 9 . (6.29)

We are thus left with five components. Instead of looking for further relations in the laboratory frame we
express eight cobinations of C,,, components in terms of the c.m.s. quantities. Making use of the fact tha
Cimims Cuipm and Cy,,, are linear combinations of Cy, and lower-order tensors [see (3.9)] and including the Paul;
principle (6.28) as well as the time reversal invariance (6.29) we find

Cs’s"ss + Ck’:k,”ss = (AOOnn - 1) CQS (B— Ot)”

Cs’k"ss - Ck’s”ss ‘= ) (AOO‘nn - 1) sin (ﬁ - d) ‘

Cosisi + Crnrse = — Komo — Diyou0) sin (B = )

Cs'k"sk ;_ Ck’s"sk = (KOrmO - DnOnO) Cos (ﬂ - OC)

Cysiss — Cirgg = — 2 Cyyrcos (o + B + 6) + 2 Cumsin (@ + f + 6)
— (Aoom — 1) cos (& + f) cos 6
+ Komo + Dyono — 2) sin (¢ + ) sin 6

Cowrss + Cpgrs = = 2 Cyysin(a + f + 0) — 2 Cumcos (@ + B + 6)
= (Aoou — 1) sin (@ + p) cos @
— Komo + Dyono — 2) cos (x + p) sin 6

Cosse = Cpwre = 2Cyysin(a + f + 0) + 2 Cium cos (@ + B + 6)
+ (Aoom — 1) cos (@ + f)sin 0
+ Komo + Dyono — 2) sin (« + B) cos 6

’ Cywrse + Cgrge = — 2 Cyycos (o + f + 8) + 2 Cypy sin (a + B + 6)

+ (Aoopn — 1) sin (x + B) sin §
~ Komo + Duopo — 2) cos (@ + f)cosb.

6.3

From (6.30? and (6.31) we see that only two co'm‘binatio‘ns of C,yq are actually independent of othe
laboratory experiments (they yield Cy, and Cy,,,), as expected.

7. The Pauli principle and nucleon-nucleon scattering. — The nucleon-nucleon scattering matrix, as us
in this article, is symmetric with respect to the interchange of particles 1 and 2. For proton-proton or neutror
neutron scattering this symmetry is a consequence of the particles being identical. For neutron-proton scatterin
ic; abger}ce of a nonsymmetric term proportional to (6, — 65, n) is an additional assumption, related to th
Isotopic invariance of nuclear forces, ‘ |
. A direct consequence of this symmetry which is exploited through-out this article, is that the number

independent experiments (in any frame of reference) is greatly reduced (see sections 3 and 6). :
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1aining Further consequences of the Paulj principle are obtained for genuinely identical particles (pp or nn scatter-
ing). The particle identity in either the final state or the initial state implies

quik(kfa ki) = quik(_ kf’ ki) = quki(kfs - ki) - (7- 1)
(6.2 All labels in the three terms of (7.1) refer to the basis given in (2.2) for the final and initial momenta in the
k; and k; directions. However, the experimental quantities as defined in section 3 are labelled in the frames
relative to the final and initial momentum directions actually considered, i.e. — k¢, k; for the second and k;,

— k; for the third term in (7.1). For this reason the following transformations should be made in addition
to (7.1) :

n—- —n, - —m, m- —1 for k — —k
and
n—- —n, I-m, m — 1 for k - — k.

Besides, k; - — k; as well aé k; - — k; changes the scattering angle 0™ = § to 1 — §.
In more detail, formulas (7. 1) together with the relations of section Jimply :

o(8) = o(n — )] PO) = — P(r — )]

Cinoo(0) = Cunoo(m — 6), Cuoo(0) = Comoo(m — 6)

Cimoo(8) = Cimoo(n ~ 0),

Dono(0) = Kouolm — 0) , Do) = Kommo(m — 6)
D pomo(0) = Kouo(n — ), Diomo(0) = Komo(n — 0) (1.2)

Cuno(0) = Cupo(m — 0), Cimno(0) = — Cimmo(m — 6)

Coino(0) = — Coino(m — ), Cino(0) = — Ciio(m — 6)

Ciumo(0) = — Comio(n — 0) , Como(0) = ~ Cimo(n — )

Cu(®) = Cunlm — 6), Cunl0) = — Crim(m — 6)
Clmlm(e) = Clmml(TC - 0) » Cllmm(g) = Cllmm(n - 0) '

R )] corresponds to @ — = — B and B — = — a. Thus we obtain
o(0,) = 0(92) s PY,) = — P(6,) 7 3)
Cnn00(01) = CnnOO(OZ) 3 'DnOnO(Hl) = KOnnO(ez) ‘
Cs’s”OO(gI) = Cs's”00(02) s AOOss(gl) = AOOss(GZ)
Cs'k"oo(01) = - Ck’s”OO(HZ) b Aoosk(91) = - A00sk(92)
Ck‘k”OO(gl) = Ck’k"oo(oz) s A00kk(91) = Aootck(@z)
Ds'OsO(Gl) = KOs”sO(02) ] Ks’OOs(el) = 'DOs”Os(BZ)
Dyoko(61) = — Kogno(02),  Kyoou(8y) = — Dyg0i(6,)
Dk’0s0(01) = - KOk"sO(ez) s Kk'00s(91) = - DOk”Os(ez)
Dk’OkO(el) = Ko::”ko(ez) v Kk'00k(91) = DOk”Ok(gz)
Cs's”nO(gl) = - Cs’s"n0(02) .
Ck’s"no(gl) = C’s’k”no(el) ’ (7' 3)
Ck'k"no(91) = = Ck’k”no(gz)
Cs’nsO(ol) = - C;xs”s0(02) s Cs’nO.s'(GI) = - Cns”Os(OZ)
Censo(0) = Currs0(02) Cunos(0y) = an"Os(gz)
Cs'nko(01) = Cns"kO(eZ): Cs'nOk(91) = Cns"Ok(02)

Ck'nko(01) = - an"ko(ez) s Ck'nOk(91) = - an”Ok(02)
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MnOkk(Hl) == nokk(el)

MnO.ks(Gl) = MnOsk(GZ)

Cyselly) = Cs’s”ss(02) s Ck’k”sk(gl) = - Ck’k"sk(ez) :

Corsl0) =  Ciws02) s Corss(01) = — Cross(62) (7.3)
Cs'k"sk(gl) = Crssil02) , Cogalfy) = — Cogs(02) -

iti i i i iti btained for 8 = =/2, i.e. for 6; = 6,.
Additional simple relations between experimental quantities are o h
For nn (or pp) scattering the relations follow from the fact that a,(n/2) = 0, b,(n/2) = — ¢,(n/2) [see table ]]
(many of them can be obtained from (7.2) by puttingz — 6 = 6).
Thus we find in the c.m.s. [11]

o)l =)o
lf il o)l 55l
Diro (g) = — Dyomo G) = - Koz)o(%) = Kommo §>,
g -6mlf) - )l
ol -cofl) oml)-ont))
2 Do @ + cnno(,(g) +2Cyy @ =1,

Since the Pauli principle implies dy(n/2) = e4(n/2) = 0 we also obtain relations between s (or pp) and np
experiments in the c.m.s. [11]

# : in w (2 n z
4 ann<7_2.c_> Cl'm00<g) = 4 g"? (5) Cimoo (5)

5 0 (T [T\ fup (7
! a" (72-3) Clnan (’2‘) =40 p(§> CIII;O ('2-)

T l Cnm T ’ " it | n ' \
gnu< ) 1 ll;” <__> _ 40 l’(_) 1 — Clllpl <_.>
T | 14 b4 | | T | n s n L K T |
o™ (—2 ) 1 1’1’:%0(2) 2 D,’;’(l),no (‘2) =4 [ p<—2) 1 + CmeO (—2> - Dn(I)JnO <_2> - Oﬁno (—2>

Relations equivalent to (7.4) for nn or Dp scattering can also be written in the laboratory system. These
relations can be obtained directly from (7.4) by performing the appropriate rotations or from the formulas of
table V, remembering that a,(n/2) = 0, by(nf2) = — ¢y(n)2).

The laboratory system relations hold for bp=0,=n/4—a=p—n/4 (e 0 = T2, « + B = m/2).
The Ls. scattering angle for which this occurs is given by

s 1/2
cos 0, = cosf, = ST (7.6)
s m '

£ e o ae

by =t

7.5 |
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where s is the invariant total energy squared and m is the nucléon mass. of 1

Let us first consider the scattering of identical nucleons. All relations (7.3) hold with 0, = 8,. Additional

prin

relations are ; 1
P = oo = Cyymo = Cogrng = Mg = Corrs — stud

= R00sk = Vyrs'n0 = Cpprpe = n0ss — “y's'sk = Ck’k”sk = O (770) FOI“

DS’OSO = - DOs"Os = - Ks’OOs = KOs”sO s and,

Dyoro = Dogror = — Koo = — Kosmo 6:5

Dioso = Doprgy = — Kioos = — Kopego - high

Digyo = — Dopugyy = ~ Kyoor = K orrko ; Presé

g
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AOOkk - AOOss = Cs’s"OO - Ck’k”OO >
Aoowx + Aooss = Cpugo — 1,

2 Cs’k”OO = (1 - CnnOO) sin 2 61 ’

(7
Dy oro Dyos0 2 Copr ‘
= ~ =20 _ tan g, , e —tan26,, 7.7h
Dyoxo D0 ! Cys00 + Crirno ! (7.75)
fE)I' Hlt ;1 Cs'n.\‘O = - C.\"nOS = - Cns”sO = Cns”Os s
) [see table]
Ck’nsO = = Ck’nOs = an"so = - an”Os s
Como = — Conor = Cousno = — Csvok » (7.7¢)
Ck‘nkO = - Ck'nOk = = Cyo = Curror » .
Cs’nsO Ck’nkO
= — —— =tan§, ,
Ck'nsO Cs’nkO !
Cs’s"ss + Ck’k"ss = - Cs’s”OO - Ch’k"OO H
Cs’k"ss = - Cs’k”OO s (77d)
Ck’k"ss - Cs's”ss +2 Cs’k”sk =1-2 DnOnO + CnnOO .

a For identical nucleons at §, = 0, (6 = =/2) only three amplitudes are independent, eg b=1b,d=d
and e = e, (the subscript refers to isospin T' = 1). Thus only 9 linearly independent experimental quantities
exist. Indeed, a measurement of ¢, C,,,,, and of Duono = Ky, will determine |5 2, | d [* and | e [%. Two inde-
pendent components of the two index tensors, e.g. Dyo,0 and Dy, will determine Re 5* 4 and Im b* ¢, and a
measurement of any one of the quantities Aooss: Aookis Crsnoo OF Chpngo Wil yield Im d* e. Finally, three compo-
nents of the three-component tensors, e.g. Cy 0, Cyuo and M, o5 Will provide us with Re p* e, Im b* 4 and
Re d* e

The formulas(7. 5) relating nn (or pp) and np experimental quantities have their equivalents in the laboratory
r pp) and - system. Four independent relations of this type can be written in various forms. We find a convenient set of

relations to be the following :

a"(C¥ino0 —CGlioo) = 4o "(Cro0 — Cihooo)
0"(Clino + Cllimo) = 4 T (Cllny + ClPoro)
¢"(1 + Ciioo = 2 Dji0) = 4a™(1 + Cityy — DI — Gmo)
0""1(2 D:(')'no - C.gg”ss + Clg'llc”ss) =4 o.np(D’r:gnO + K(')Igno — Cilgs + Ckn’i"ss)

s's"ss

(7.8

8. Conclusions. — In'this article we have reviewed the kinematics of nucleon-nucleon scattering and
filled in many gaps in the existing formalism. We have concentrated on phenomenological aspects only, i.e.
the relations between experimental quantities and the scattering matrix and relations amongst experimental
quantities themselves. The formulas presented in this paper should be useful for experimentalists studying
nucleon-nucleon elastic scattering and for the practitioners of nucleon-nucleon amplitude analysis.

The results obtained make it possible to compare explicitly and exactly all experiments performed under
different conditions to obtain the same physical information (like various components of the polarization rota-
tion tensor D, for a polarized beam or Doyoq for a polarized target, various components of the scattered or
recoil particle polarization for initially polarized beams and targets, etc.). A reasonably complete list of relations

sets of experiments, usually performed in different laboratories, for consistency between them. Since the origin
of most the relations can be traced back to various symmetries (parity, time reversal invariance and the Pauli
principle), a test of the relations is also a test of the underlying principles.

Some new formulas are contained in all of sections 3 to 7, but we specially wish to mention the detailed
study of the implications of the Pauli principle for the scattering of identical nucleons, presented in section 7.
For nn (or pp) scattering, relations are given between experimental quantities measured at the c.m.s, angles
and n — 6 and Ls. angles 6, and 0, (6, and 6, are the scattering and recoil angles). All constraints occurring for
0 =n/2ie 6, = 0, are listed and also relations between certain nn-and mp quantities for the same angle,
In view of the interest in nucleon-nucleon interactions, the availability of accelerators in intermediate and
high energy regions and the increasing use of polarized proton targets we think that this is the correct moment to
present an explicit and complete exposition of the nucleon-nucleon formalism.
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We would like to reemphasize that the entire contents of this article is a formalis_m, i.e. pure kinematics,
As such it should be useful in any study of nucleon-nucleon scattering, either theoretical or expeglmental. In
particular the entire formalism is relevant for any attempts to reconstruct the nucleon;nucleon amplitudes frorp
data, This holds both for a direct reconstruction making use of some complete experiment, as defined by Puzi-
kov, Ryndin and Smorodinskii [5] and for a reconstruction via phase shift analysis, Regge pole theory or any
other expansion. , '

In the near future we plan to present some thoughts and results making use of the present for'mahsm for
reconstructing nucleon-nucleon scattering amplitudes from experiments. One of our interests hereils the ques-
tion of the uniqueness of such a reconstruction (be it a direct reconstruction or one via a phase shift analysis),

A further program in which this formalism will be used concerns a simultaneous reconstruction for all energies
(and angles) making use of previously developed two-variable expansions of scattering amplitudes (see the

review [34] and the paper [35]).
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