With reference semantics, assignment is a pointer-copy (i.e., a reference). Value (or "copy") semantics mean assignment copies the value, not just the pointer. C++ gives you the choice: use the assignment operator to copy the value (copy/value semantics), or use a pointer-copy to copy a pointer (reference semantics). C++ allows you to override the assignment operator to do anything your heart desires, however the default (and most common) choice is to copy the value.
Pros of reference semantics: flexibility and dynamic binding (you get dynamic binding in C++ only when you pass by pointer or pass by reference, not when you pass by value).
Pros of value semantics: speed. "Speed" seems like an odd benefit to for a feature that requires an object (vs. a pointer) to be copied, but the fact of the matter is that one usually accesses an object more than one copies the object, so the cost of the occasional copies is (usually) more than offset by the benefit of having an actual object rather than a pointer to an object.
There are three cases when you have an actual object as opposed to a pointer to an object: local objects, global/static objects, and fully contained member objects in a class. The most important of these is the last ("composition").
More info about copy-vs-reference semantics is given in the next FAQs. Please read them all to get a balanced perspective. The first few have intentionally been slanted toward value semantics, so if you only read the first few of the following FAQs, you'll get a warped perspective.
Assignment has other issues (e.g., shallow vs. deep copy) which are not covered here.
[ Top | Bottom | Previous section | Next section ]
virtual data allows a derived class to change the exact class of a base class's member object. virtual data isn't strictly "supported" by C++, however it can be simulated in C++. It ain't pretty, but it works.
To simulate virtual data in C++, the base class must have a pointer to the member object, and the derived class must provide a new object to be pointed to by the base class's pointer. The base class would also have one or more normal constructors that provide their own referent (again via new), and the base class's destructor would delete the referent.
For example, class Stack might have an Array member object (using a pointer), and derived class StretchableStack might override the base class member data from Array to StretchableArray. For this to work, StretchableArray would have to inherit from Array, so Stack would have an Array*. Stack's normal constructors would initialize this Array* with a new Array, but Stack would also have a (possibly protected:) constructor that would accept an Array* from a derived class. StretchableArray's constructor would provide a new StretchableArray to this special constructor.
Pros:
Cons:
In other words, we succeeded at making our job easier as the implementer of StretchableStack, but all our users pay for it. Unfortunately the extra overhead was imposed on both users of StretchableStack and on users of Stack.
Please read the rest of this section. (You will not get a balanced perspective without the others.)
[ Top | Bottom | Previous section | Next section ]
The easiest way to see the distinction is by an analogy with virtual functions: A virtual member function means the declaration (signature) must stay the same in subclasses, but the definition (body) can be overridden. The overriddenness of an inherited member function is a static property of the subclass; it doesn't change dynamically throughout the life of any particular object, nor is it possible for distinct objects of the subclass to have distinct definitions of the member function.
Now go back and re-read the previous paragraph, but make these substitutions:
After this, you'll have a working definition of virtual data.
Another way to look at this is to distinguish "per-object" member functions from "dynamic" member functions. A "per-object" member function is a member function that is potentially different in any given instance of an object, and could be implemented by burying a function pointer in the object; this pointer could be const, since the pointer will never be changed throughout the object's life. A "dynamic" member function is a member function that will change dynamically over time; this could also be implemented by a function pointer, but the function pointer would not be const.
Extending the analogy, this gives us three distinct concepts for data members:
The reason they all look so much the same is that none of this is "supported" in C++. It's all merely "allowed," and in this case, the mechanism for faking each of these is the same: a pointer to a (probably abstract) base class. In a language that made these "first class" abstraction mechanisms, the difference would be more striking, since they'd each have a different syntactic variant.
[ Top | Bottom | Previous section | Next section ]
Composition.
Your member objects should normally be "contained" in the composite object (but not always; "wrapper" objects are a good example of where you want a pointer/reference; also the N-to-1-uses-a relationship needs something like a pointer/reference).
There are three reasons why fully contained member objects ("composition") has better performance than pointers to freestore-allocated member objects:
[ Top | Bottom | Previous section | Next section ]
The three performance hits are enumerated in the previous FAQ:
Thus fully-contained member objects allow significant optimizations that wouldn't be possible under the "member objects-by-pointer" approach. This is the main reason that languages which enforce reference-semantics have "inherent" performance challenges.
Note: Please read the next three FAQs to get a balanced perspective!
[ Top | Bottom | Previous section | Next section ]
Occasionally...
When the object is referenced via a pointer or a reference, a call to a virtual function cannot be inlined, since the call must be resolved dynamically. Reason: the compiler can't know which actual code to call until run-time (i.e., dynamically), since the code may be from a derived class that was created after the caller was compiled.
Therefore the only time an inline virtual call can be inlined is when the compiler knows the "exact class" of the object which is the target of the virtual function call. This can happen only when the compiler has an actual object rather than a pointer or reference to an object. I.e., either with a local object, a global/static object, or a fully contained object inside a composite.
Note that the difference between inlining and non-inlining is normally much more significant than the difference between a regular function call and a virtual function call. For example, the difference between a regular function call and a virtual function call is often just two extra memory references, but the difference between an inline function and a non-inline function can be as much as an order of magnitude (for zillions of calls to insignificant member functions, loss of inlining virtual functions can result in 25X speed degradation! [Doug Lea, "Customization in C++," proc Usenix C++ 1990]).
A practical consequence of this insight: don't get bogged down in the endless debates (or sales tactics!) of compiler/language vendors who compare the cost of a virtual function call on their language/compiler with the same on another language/compiler. Such comparisons are largely meaningless when compared with the ability of the language/compiler to "inline expand" member function calls. I.e., many language implementation vendors make a big stink about how good their dispatch strategy is, but if these implementations don't inline member function calls, the overall system performance would be poor, since it is inlining not dispatching that has the greatest performance impact.
Note: Please read the next two FAQs to see the other side of this coin!
[ Top | Bottom | Previous section | Next section ]
Wrong.
Reference semantics are A Good Thing. We can't live without pointers. We just don't want our s/w to be One Gigantic Rats Nest Of Pointers. In C++, you can pick and choose where you want reference semantics (pointers/references) and where you'd like value semantics (where objects physically contain other objects etc). In a large system, there should be a balance. However if you implement absolutely everything as a pointer, you'll get enormous speed hits.
Objects near the problem skin are larger than higher level objects. The identity of these "problem space" abstractions is usually more important than their "value." Thus reference semantics should be used for problem-space objects.
Note that these problem space objects are normally at a higher level of abstraction than the solution space objects, so the problem space objects normally have a relatively lower frequency of interaction. Therefore C++ gives us an ideal situation: we choose reference semantics for objects that need unique identity or that are too large to copy, and we can choose value semantics for the others. Thus the highest frequency objects will end up with value semantics, since we install flexibility where it doesn't hurt us (only), and we install performance where we need it most!
These are some of the many issues the come into play with real OO design. OO/C++ mastery takes time and high quality training. If you want a powerful tool, you've got to invest.
Don't stop now! Read the next FAQ too!!
[ Top | Bottom | Previous section | Next section ]
Nope.
The previous FAQ were talking about member objects, not parameters. Generally, objects that are part of an inheritance hierarchy should be passed by reference or by pointer, not by value, since only then do you get the (desired) dynamic binding (pass-by-value doesn't mix with inheritance, since larger subclass objects get "sliced" when passed by value as a base class object).
Unless compelling reasons are given to the contrary, member objects should be by value and parameters should be by reference. The discussion in the previous few FAQs indicates some of the "compelling reasons" for when member objects should be by reference.
[ Top | Bottom | Previous section | Next section ]
E-mail the author
[ C++ FAQ Lite
| Table of contents
| Subject index
| About the author
| ©
| Download your own copy ]
Revised May 27, 1998